— Мы уже знаем с конца семидесятых годов, что черная дыра может излучать — это так называемое излучение Хокинга. Но считалось, что это излучение не может нести в себе информацию. Сейчас мы понимаем, что это не так, что информация должна вместе с этим излучением выходить из черной дыры, но детальный механизм проникновения информации за пределы черной дыры вместе с хокинговским излучением в деталях не понят. Это один из актуальных вопросов теоретической физики.
Если вернуться к теории струн, то она хороша как раз тем, что может описать гравитацию на квантовом уровне.
— А как связаны теория струн и космологическая инфляция?
— Космологическая инфляция произошла на ранних этапах развития Вселенной. Мы не можем утверждать точно, но возможен сценарий развития Вселенной, в рамках которого именно гравитационные квантовые эффекты были важны на этой стадии. И если такой сценарий действительно реализовался, тогда у нас фактически нет никаких других методов описать происходящее, кроме как в рамках теории струн. Вот мы и предприняли попытку посмотреть, насколько такое описание будет естественно, насколько оно будет обладать предсказательной силой.
Интересно, что теория струн возникла как попытка решить вопрос номер три, то есть описать ядерные и субъядерные взаимодействия. Я уже упоминал, что протон состоит из кварков и глюонов. Это возможно благодаря такому явлению, как конфайнмент: удерживание кварков внутри протона. Объяснить, почему это происходит, мы можем на качественном уровне, но на количественном уровне точное описание, по большому счету, отсутствует.
В конце шестидесятых была предпринята попытка понять, как взаимодействуют кварки внутри протонов или нейтронов. И теория струн была, в частности, придумана как модель для описания взаимодействия элементарных частиц, формирующих протон, а также других элементарных частиц, участвующих в сильных взаимодействиях.
— Эта теория может каким-то образом быть подтверждена экспериментально?
— Та теория струн, которая была придумана в шестидесятые годы для объяснения протона, устарела. Но выяснилось, что теория струн является очень хорошим кандидатом для ответа на вопрос, как работают самые фундаментальные законы физики. Можем ли мы ее проверить? На данный момент осуществить эксперимент, который сумел бы отличить теорию струн от альтернативных теорий, мы не можем. Более того, мы не знаем, сможем ли мы такой эксперимент придумать и поставить в будущем. Возможно, это будет зависеть от нашей удачи.
Мы не знаем, какой из сценариев реализован в нашей Вселенной, в частности на каких энергиях происходила космологическая инфляция. Если нам повезет и космологическая инфляция происходила на исключительно высоких энергиях, тогда у нас появится шанс хотя бы частично проверить теорию струн.
Или на определенном этапе в рамках ускорительных экспериментов мы обнаружим так называемые дополнительные измерения. Это тоже даст нам шанс экспериментально проверить теорию струн.
То есть проверить теорию струн мы сможем, если нам очень повезет или, правильнее сказать, если нам уже повезло, хотя мы про это еще не знаем.
— Вы сказали об ускорительных экспериментах. Речь идет о Большом адронном коллайдере? Или для подтверждения теории струн требуется еще больший ускоритель?
— Мы не знаем, каких энергий нужно достичь, чтобы экспериментально обнаружить подтверждение теории струн. Конечно, при увеличении энергии на ускорителе увеличивается и шанс обнаружить что-то новое и интересное. Но каких-то серьезных аргументов в пользу того, что именно при уровне энергий, достижимом на БАК, или в десять раз, или в сто раз этот уровень превышающем, мы обнаружим косвенно следы или элементы теории струн, — таких аргументов у нас нет.
— Может ли теоретическая физика закончиться? Допустим, мы сумеем познать весь мир, получим исчерпывающие ответы на все вопросы — и дальше останутся только детали, которые будут решать какие-то прикладные науки.
— Ответ на этот вопрос, на мой взгляд, связан с другим вопросом: закончится ли математика? Я думаю, что нет. А значит, не закончится и физика.
— То есть?
— По своей внутренней структуре теоретическая физика — это дисциплина, родственная и во многом похожая на математику. И точно так же как
развитие математики бесконечно, бесконечно и
развитие теоретической физики.
— А физика влияет на математику?
— Безусловно. Позвольте привести всего лишь один маленький пример. Есть некие специальные интегралы от определенных гипергеометрических функций. В принципе такие объекты изучаются наукой уже более сотни лет.
И вот в результате физических исследований возникает новое соотношение, такой-то интеграл от одной функции равен такому-то интегралу от другой функции. Раньше это соотношение известно не было. Никакие специалисты по гипергеометрическим функциям этого не знали. Сейчас, когда вам об этом рассказали, вы можете пытаться это соотношение изучить и доказать.
Так вот, эти соотношения были получены именно в рамках теории струн. И они были получены не математиками, а физиками, именно физическими методами. В рамках теоретической физики часто бывают ситуации, которые предполагают два разных описания одной и той же теоретической модели. Это называется дуальностью. Корпускулярно-волновой дуализм — один из примеров такой дуальности. У вас есть одна и та же физическая система, которую вы называете «элементарная частица», но это просто название. На самом деле у вас есть два параллельных описания, одно в виде волны, другое — в виде частицы.
То есть у вас есть одна и та же физическая система, но с математической точки зрения она описывается совершенно разными уравнениями. Частица, грубо говоря, описывается траекторией. Это линия, это функция или несколько функций от одной переменной. Волна — это уже функция от многих переменных. С математической точки зрения это два разных объекта.
Тем не менее вы знаете, что описываете одну и ту же физическую систему. Поэтому если вы будете задавать одни и те же вопросы, например, о результатах какого-то гипотетического эксперимента, то в рамках двух существующих описаний придете к одному и тому же ответу. Это может выглядеть как некое тривиальное равенство, когда некое число будет равно самому себе. Но может выглядеть и как совсем нетривиальное уравнение, где некая сложная формула слева равна совсем другой сложной формуле справа. Это уже будет новое математическое утверждение. Теперь вы можете забыть, как пришли к этому утверждению и что вы описываете некую физическую систему, и далее изучать его с чисто математической точки зрения.
— Вы читаете в «Сколтехе» курс «Думать математически». А что для вас значит «думать математически»?
— Как правило, если речь идет об обучении математике в рамках инженерного курса либо курса естественных наук, в первую очередь речь идет о привитии каких-то практических навыков. Например, решения дифференциальных уравнений определенного вида. То есть очень узкий набор задач в очень узком контексте. Никакой общей картины при этом у студентов не возникает. Как результат, одни и те же задачи в разных контекстах студенты могут просто не узнать. Грубо говоря, вы знаете, как решать определенные задачи по заданному алгоритму, но понимания того, что происходит, у вас нет. А я хотел бы в первую очередь объяснить студентам, что математика — это универсальный язык.
Я пытаюсь научить студентов мыслить математически, то есть мыслить абстрактно, мыслить в терминах математических категорий, а не каких-то конкретных приложений. Потому что считаю очень важными междисциплинарные исследования. И хотел бы, чтобы студенты умели работать междисциплинарно, то есть не ограничиваясь рамками каких-либо отдельных дисциплин. А для этого им необходимо уметь использовать весь имеющийся инструментарий как можно более широко.
— Можно ли, развивая вашу мысль, сказать, что современный физик — это физик, который должен уметь думать математически и при этом не должен отвлекаться на интуитивное объяснение физических явлений, тем более что, кажется, порой это просто невозможно?
— Я согласен с тем, что физик должен уметь думать математически1. Но мне кажется, что как раз сила физической школы мышления в том, что она интуитивна. Именно это часто позволяет физике, хотя и не всегда, опережать математику.
— И на уровне теории струн тоже может работать интуиция?
— Безусловно. Например, в рамках теории струн существует голографическое соответствие, когда одна и та же физическая система имеет два совершенно разных описания. Одно описание в терминах квантовой теории поля, другое описание в терминах теории относительности. И оба описывают систему точно. Математически строго установить это невозможно, и мы опираемся на интуицию, чтобы понять, что это действительно так. Так что часто работа идет именно на уровне аналогий и интуиции, а не на уровне математических формул.
Голография в данном случае — это заимствованное слово. Обычная голография создает трехмерную визуализацию с помощью двухмерной пластинки. Нечто похожее происходит и в случае голографического соответствия: одно описание — это элементарные частицы электроны и фотоны в плоском четырехмерном пространстве, другое описание — гравитационные поля в пятимерном пространстве. Одно описание — в терминах квантовой теории поля. Другое описание — в терминах теории относительности.
Хотите ли вы описывать взаимодействие электронов и фотонов с помощью гравитонов или, наоборот, хотите описывать гравитоны с помощью электронов и фотонов — это зависит от поставленной задачи. Я чаще описываю фотоны с помощью гравитонов, чем наоборот.
— Вы закончили Московский университет. Почему вы уехали за границу сразу после его окончания?
— Я понимал, что лучшее образование, лучшие профессора — все это в данный момент находится в США. И если я хочу реализовать себя как физик, нужно ехать в Соединенные Штаты, чтобы продолжить там обучение в аспирантуре.
Когда речь идет о качестве образования на уровне аспирантуры, главную роль играет актуальность выбора научной темы. На момент окончания университета я понимал, что существующие в Москве научные группы не всегда занимались самыми передовыми вещами.
— Почему? Казалось бы, теоретическая физика не требует каких-то приборов.
— Тут комбинация нескольких факторов. Первый фактор: научная работа предполагает постоянное общение с коллегами. В Советском Союзе было достаточно много специалистов в этой области, была насыщенная научная
жизнь, люди активно общались между собой. То, что я видел уже студентом, — произошел распад на отдельные островки. Каждый серьезный специалист продолжал заниматься своей темой, но интенсивность общения между различными группами была уже невелика... Можно сказать, не было единого научного сообщества. Не хочу сказать, что общения между группами не было вообще. Но просто по сравнению с тем, как это работает в США, когда на базе каждого университета функционирует семинар, люди ездят, общаются, обмениваются идеями… В Москве, конечно, что-то подобное было, но каждая научная школа устраивала свои собственные семинары, и между школами общения было очень мало. И получалось так, что происходила самоизоляция. Это первый важный фактор.
Второй фактор — обычно ученый на ранних этапах своей карьеры становится специалистом в какой-то определенной области и далее в этой конкретной области работает. А новые темы предлагают и продвигают более молодые люди. Как вы сами знаете, очень много молодых талантливых ученых уехало из Советского Союза, из России в конце восьмидесятых — начале девяностых годов. И в начале двухтысячных, когда я заканчивал университет, явно
чувствовался дефицит молодых людей в науке, в возрасте от 25 до 40–45 лет, и сейчас он продолжает очень остро
ощущаться. Есть люди совсем молодые, студенты и аспиранты, есть состоявшиеся ученые, но нет всего «спектра».
— А «Сколтех» вы почему выбрали?
— Для меня очень важно, что в «Сколтехе» на уровне организации университета убраны все междисциплинарные барьеры. У нас в университете нет факультетов, у профессоров нет ярлыка «профессор физики» или «профессор математики». Мы все вместе — профессорско-преподавательский состав университета. Мы активно общаемся друг с другом, со всеми нашими студентами и аспирантами вне зависимости от темы исследований.
Мне всегда было интересно заниматься какими-то междисциплинарными проектами, имеющими прикладной характер и выходы на практические технологии. И я понимал, что в рамках обычного университета, поскольку я являюсь теорфизиком и меня оценивают именно как теорфизика, мне будет тяжело реализовывать такие проекты. Мои занятия чем-либо помимо основной тематики, не будут восприниматься положительно. Они будут восприняты как частная инициатива, в лучшем случае.
В «Сколтехе» же, напротив, такого рода деятельность приветствуется, и мне это очень нравится. В «Сколтехе» 15 различных центров, которые сочетают в себе исследовательские функции, образовательные и инновационные. Я с удовольствием взаимодействую сразу с несколькими такими центрами и решаю различные задачи, в том числе прикладные. Собственно, это то, ради чего я шел в «Сколтех».
источник