Как физика, а не математика, в итоге решает знаменитый парадокс Зенона?
Самым быстрым человеком в мире, согласно древнегреческой легенде, была героиня
Аталанта. Хотя она была известной охотницей, которая даже присоединилась к
Ясону и аргонавтам в поисках золотого руна (по одной из версий), она была знаменита своей скоростью, поскольку никто не мог победить ее в честной гонке. И она также была источником вдохновения для первого из многих подобных парадоксов, выдвинутых древним философом
Зеноном Элейским: о том, что движение, с точки зрения логики, должно быть невозможным.
Чтобы добраться от начальной точки до конечной, Аталанта должна сначала преодолеть половину общего расстояния. Чтобы преодолеть оставшееся расстояние, она должна сначала преодолеть половину того, что осталось. Независимо от того, насколько мало еще осталось расстояние, она должна преодолеть половину его, а затем половину того, что еще осталось, и так далее, до бесконечности. С бесконечным количеством шагов, необходимых для того, чтобы добраться туда, очевидно, что она никогда не сможет завершить путешествие. Следовательно, утверждает Зенон, движение невозможно:
парадокс Зенона. Такое вот нелогичное заключение.
Самое старое «решение» парадокса было сделано с чисто математической точки зрения. Утверждение допускает, что, конечно, может быть бесконечное количество прыжков, которые вам нужно будет сделать, но каждый новый прыжок становился все меньше и меньше предыдущего. Поэтому, пока вы можете продемонстрировать, что общая сумма каждого прыжка, который вам нужно сделать, составляет конечное значение, не имеет значения, на сколько частей вы его разделите.
Например, если общее путешествие определено как 1 единица (какой бы ни была эта единица), то вы можете добраться до нее, добавив половину за половиной после половины и т.д. Ряд ½ + ¼ + ⅛ +… действительно сходится к 1, так что вы покрываете все необходимое расстояние, если добавляете бесконечное количество членов. Вы можете искусно доказать это, вычтя весь ряд из удвоения всего ряда следующим образом:
(ряд) = ½ + ¼ + ⅛ +…
2 × (ряд) = 1 + ½ + ¼ + ⅛ +…
Следовательно, [2 × (ряд) - (ряд)] = 1 + (½ + ¼ + ⅛ +…) - (½ + ¼ + ⅛ +…) = 1.
Просто, понятно и убедительно, правда?
Непрерывно уменьшая количество вдвое, можно показать, что сумма каждой последующей половины приводит к сходящемуся ряду: один целый «предмет» можно получить, суммируя половину плюс одну четвертую плюс одну восьмую и т.д. (Иллюстрация: PUBLIC DOMAIN IMAGE)Но это также ошибочно. Эти математические рассуждения достаточно хороши только для того, чтобы показать, что общее расстояние, которое вы должны пройти, сходится к конечному значению. Они ничего не говорят вам о том, сколько времени вам нужно, чтобы добраться до пункта назначения, и это сложная часть парадокса.
Каким образом время вступает в игру, разрушая это математически элегантное и убедительное «решение» парадокса Зенона?
Да просто нет гарантии, что каждый из бесконечного количества прыжков, который вам нужно совершить - даже для преодоления конечного расстояния - произойдет за конечное время. Например, если бы каждый прыжок занимал одинаковое количество времени, независимо от пройденного расстояния, на то, чтобы преодолеть оставшуюся крошечную часть пути, потребовалось бы бесконечное количество времени. При таком образе мышления Аталанте все еще может быть невозможно добраться до места назначения.
Одно из многих представлений (и формулировок) парадокса Зенона Элейского, связанного с невозможностью движения. Этот парадокс был раскрыт только благодаря физическому пониманию расстояния, времени и их отношений. (Иллюстрация: Buzcco Associates, inc.)
Многие мыслители, как древние, так и современные, пытались разрешить этот парадокс, обращаясь к идее времени. В частности, как утверждает Архимед, для завершения прыжка на меньшее расстояние должно потребоваться меньше времени, чем для выполнения прыжка на большее расстояние, и поэтому, если вы путешествуете на конечное расстояние, это должно занять у вас только конечное количество времени. И поэтому, если это правда, Аталанта наконец-то может добраться до места назначения и завершить свое путешествие.
Только такой способ размышления тоже ошибочен. В предельном варианте возможно, что время, необходимое для завершения каждого шага, все равно будет уменьшаться: половина исходного времени, треть исходного времени, четверть исходного времени, пятая часть и т.д., Но общее путешествие займет некоторое бесконечное количество времени. Можно проверить это самостоятельно, попробовав найти, к чему сводится ряд [½ + ⅓ + ¼ + ⅕ + ⅙ +…]. Оказывается, предела не существует: это расходящийся ряд.
Гармонический ряд, показанный здесь, является классическим примером ряда, в котором каждый член меньше предыдущего, но общий ряд по-прежнему расходится: то есть имеет сумму, которая стремится к бесконечности. Недостаточно утверждать, что прыжки на время становятся короче, чем прыжки на расстояние; количественное соотношение необходимо. (Иллюстрация: PUBLIC DOMAIN)Это может показаться нелогичным, но одна чистая математика не может дать удовлетворительного решения парадокса. Причина проста: парадокс заключается не просто в разделении конечного объекта на бесконечное количество частей, а в физическом понятии скорости.
Хотя парадокс обычно выражается в терминах одних лишь расстояний, на самом деле парадокс заключается в движении, то есть в количестве пройденного расстояния за определенный промежуток времени. У греков было слово для обозначения этого понятия -
τάχος- отсюда мы получили современные слова, такие как «тахометр» или даже «тахион», и буквально означают скорость чего-либо. Но эта концепция была известна только в качественном смысле: явная связь между расстоянием и «τάχος», или скоростью, требовала физической связи: через время.
Продолжение "Как физика, а не математика, в итоге решает знаменитый парадокс Зенона? (часть 2)"
(часть 2)
)
Продолжение. Начало статьи "Как физика, а не математика, в итоге решает знаменитый парадокс Зенона? (часть 1)"
Как быстро что-либо движется? - это скорость.
Добавьте, в каком направлении оно движется, и получится скорость.
А каково количественное определение скорости, связанной с расстоянием и временем? Это общее изменение расстояния, деленное на общее изменение во времени.
Это понятие, известное как скорость: величина, на которую одна величина (
расстояние) изменяется, когда изменяется другая величина (
время). У вас может быть постоянная скорость (
без ускорения) или изменяющаяся скорость (
с ускорением). У вас может быть мгновенная скорость (
скорость в определенный момент времени) или средняя скорость (
скорость на определенной части или на всем пути).
Если что-то движется с постоянной скоростью, и можно вычислить его вектор скорости (величину и направление его движения), то можно легко найти взаимосвязь между расстоянием и временем: будет пройдено определенное расстояние за определенное и конечное количество время, в зависимости от скорости. Это может быть рассчитано даже для непостоянных скоростей, если учесть и в включить в расчет ускорения, определенные Ньютоном. (Иллюстрация: GORDON VIGURS / ENGLISH WIKIPEDIA)Но если что-то находится в постоянном движении, соотношение между расстоянием, скоростью и временем становится очень простым:
расстояние = скорость * время.
В этом решение классического «парадокса Зенона», как обычно утверждают: объекты могут перемещаться из одного места в другое (т.е. преодолевать конечное расстояние) за конечное время, потому что их скорости не только всегда конечны, но и потому что они не изменяются во времени, если на них не действует внешняя сила. Если вы возьмете такого человека, как Аталанта, движущегося с постоянной скоростью, он преодолеет любое расстояние за время, заданное уравнением, связывающим расстояние со скоростью.
По сути, это
первый закон Ньютона (
объекты в состоянии покоя остаются в состоянии покоя, а объекты в движении остаются в постоянном движении, если только на них не действует внешняя сила), но примененный к частному случаю постоянного движения. Если вы уменьшите вдвое расстояние, на которое вы путешествуете, вам понадобится только половина времени, чтобы преодолеть его. Чтобы преодолеть (½ + ¼ + ⅛ +…) общего расстояния, которое вы пытаетесь преодолеть, вам потребуется (½ + ¼ +…) общего количества времени. И это работает на любом расстоянии, каким бы сколь угодно уменьшенным вы ни пытались его преодолеть.
Будь то массивная частица или безмассовый квант энергии (например, свет), между расстоянием, скоростью и временем существует прямая связь. Если вы знаете, с какой скоростью движется ваш объект, и если он находится в постоянном движении, расстояние и время прямо пропорциональны. (Иллюстрация: JOHN D. NORTON, VIA
HTTP://WWW.PITT.EDU/~JDNORTON/TEACHI...OCKS_RODS/)Для любого, кто интересуется физическим миром, этого должно быть достаточно, чтобы разрешить парадокс Зенона. Это работает независимо от того, является ли пространство (и время) непрерывным или дискретным; это работает как на классическом, так и на квантовом уровне; это не основывается на философских или логических предположениях. Для объектов, движущихся в этой Вселенной, парадокс Зенона разрешает физика.
Но на квантовом уровне возникает совершенно новый парадокс, известный как
квантовый эффект Зенона. Определенные физические явления происходят только из-за квантовых свойств вещества и энергии, например,
квантовое туннелирование через барьер или радиоактивные распады. Чтобы перейти из одного квантового состояния в другое, исследуемая квантовая система должна действовать как волна: ее
волновая функция со временем распространяется.
В конце концов, вероятность попадания в квантовое состояние с более низкой энергией будет отличаться от нуля. Таким образом, становится возможным перейти в более энергетически благоприятное состояние, даже если нет классического пути, который позволял бы туда попасть.
Посылая импульс света на полупрозрачную/полуотражающую тонкую среду, исследователи могут измерить время, которое требуется этим фотонам, чтобы пройти через барьер на другую сторону. Хотя сам шаг туннелирования может быть мгновенным, движущиеся частицы по-прежнему ограничены скоростью света. (Изображение: J. LIANG, L. ZHU & L. V. WANG, LIGHT: SCIENCE & APPLICATIONSVOLUME 7, 42 (2018))Но есть способ предотвратить это: наблюдая/измеряя систему до того, как волновая функция сможет достаточно распространиться. Большинство физиков называют этот тип взаимодействия «
схлопыванием волновой функции», поскольку наблюдатель, по сути, заставляет любую квантовую систему, которую он измеряет, действовать «подобно частицам», а не «волноподобно». Но это всего лишь одна из интерпретаций происходящего, и это реальное явление, которое происходит независимо от выбранной интерпретации квантовой физики.
На самом деле происходит то, что наблюдатель ограничивает возможные квантовые состояния, в которых может находиться исследуемая система, посредством наблюдения и/или измерения. Если наблюдатель сделает это измерение по времени слишком близко к предыдущему измерению, будет только бесконечно малая (или даже нулевая) вероятность туннелирования в желаемое состояние. Если он продолжит взаимодействовать своей квантовой системой с окружающей средой, он может подавить по своей сути квантовые эффекты, оставляя только классические результаты в качестве вероятностей.
Когда квантовая частица приближается к барьеру, она будет наиболее часто взаимодействовать с ним. Но существует конечная вероятность не только отражения от барьера, но и туннелирования через него. Однако если бы наблюдатель измерял положение частицы непрерывно, в том числе при ее взаимодействии с барьером, этот туннельный эффект можно было бы полностью подавить с помощью квантового эффекта Зенона. (Иллюстрация: YUVALR / WIKIMEDIA COMMONS)Вывод таков: движение из одного места в другое возможно; и именно благодаря явной физической связи между расстоянием, скоростью и временем мы можем точно узнать, как происходит движение в количественном смысле. Да, чтобы преодолеть полное расстояние от одного места до другого, необходимо сначала преодолеть половину этого расстояния, затем половину оставшегося расстояния, затем половину того, что осталось, и т.д.
Но время, необходимое для этого, также уменьшается вдвое, и поэтому движение на конечное расстояние всегда занимает только конечное количество времени для любого движущегося объекта. Хотя это все еще остается интересным упражнением для математиков и философов, и решение зависит не только от физики, но физики даже распространили его на квантовые явления, где появился новый
квантовый эффект Зенона - не парадокс, а подавление чисто квантовых эффектов. Как и во всех областях науки, сама Вселенная является окончательным арбитром в поведении реальности. Благодаря физике мы наконец поняли, как это сделать.