Показать сообщение отдельно
Старый 03.11.2019, 21:46   #3
Феникс Джонатанович ДонХуанЦзы
Senior Member
МегаБолтун
 
Аватар для Феникс Джонатанович ДонХуанЦзы
 
Регистрация: 02.06.2006
Адрес: Москва
Сообщений: 70,312
Записей в дневнике: 4
Вес репутации: 10
Феникс Джонатанович ДонХуанЦзы отключил(а) отображение уровня репутации
По умолчанию

ВЗАИМООТНОШЕНИЕ МЫШЦЫ И КОСТНЫХ РЫЧАГОВ
Работу двигательного аппарата человека обычно излагают с позиций общих законов механики, вполне применимых для оценки системы опорно-двигательного аппарата как системы рычагов. Рычагом называется всякое твердое тело, способное совершать вращательные движения около оси, на плечи которого действуют две противоположные силы: движущая сила (мышечные сокращения) и сила сопротивления. В зависимости от величины движущей силы и силы сопротивления возможно равновесие или движение рычага. Для понимания равновесия или движения рычага необходимо иметь определенное представление о плече рычага и о моменте вращения силы.

Плечом рычага называют расстояние оси вращения (О) до точки приложения силы (ОА и ОБ). Плечом силы называют кратчайшее расстояние - перпендикуляр от оси вращения до вектора силы или его продолжения (OA1 и OБ1) (рис. 1).

Участие каждой мышцы в выполнении движений зависит не только от величины подъемной силы, но также и от величины плеча рычага, что определяется моментом силы. Моментом силы называется произведение силы на ее плечо. Моментом силы FI будет произведение FI·OAI или FI·Sin ОА; моментом силы FII будет FII·OБI, или FII·Sin·OБ. Таким образом, условие для равновесия рычага достигается тогда, когда сумма моментов сил, действующих на него, относительно оси вращения равна нулю. Если равенство моментов сил нарушается, то рычаг начинает вращаться в направлении той силы, момент которой больше. Момент силы является непостоянной величиной, обусловленной положением одних костей по отношению к другим, образующим данное сочленение. Поэтому при сгибании в суставе будет нарастать плечо рычага сгибателей и соответственно момент силы, т. е. увеличивается угол подхода сухожилия к мышце, что способствует повышению подъемной силы мышцы. В большей части случаев мышцы прикрепляются вблизи суставов и подходят к костям под острым углом. При этом плечо силы меньше плеча сопротивления; при подобном прикреплении мышцы проигрывают в силе.

В опорно-двигательной системе имеются образования, способствующие увеличению плеча силы мышц, благодаря чему значительно повышается момент силы. К этим образованиям относятся сесамовидные кости, блоки, костные отростки и бугры, разнообразные выступы и шероховатости. За счет этих образований значительно возрастает момент силы мышц. Следовательно, сила мышцы зависит не только от количества мышечных волокон, но и от плеча рычага.

Виды рычагов. В зависимости от расположения движущей силы (мышечное сокращение) и силы сопротивления относительно оси вращения различают рычаги первого, второго и третьего рода.

Рычаг первого рода является двуплечим. Обе силы имеют одинаковое направление, а между ними находится ось вращения данного рычага (рис. 2). Рычаг первого рода называют также рычагом равновесия. Например, атлантозатылочное сочленение и тазобедренный сустав представляют оси вращения рычагов первого рода, по сторонам от которых располагаются плечи рычагов.

Рычаг второго рода - одноплечий рычаг, так как приложения сил имеют противоположные направления. Движущая сила оказывает действие на длинное плечо рычага, а сила сопротивления - на короткое плечо (рис. 160). Например, в голеностопном суставе одна сила действует вверх, другая - вниз. Давление, которое возникает в оси вращения рычага, соответствует разности действующих сил. Действие мышцы в конструктивной особенности рычага второго рода направлено на выполнение движений, требующих большой мышечной силы, поэтому рычаг второго рода называют также рычагом силы.

Рычаг третьего рода хотя и является одноплечим рычагом, но его отличие от рычага второго рода заключается в том, что сила действует на короткое плечо, а плечо сопротивления - на длинное (рис. 4). Рычаг третьего рода можно назвать рычагом скорости. Например, при выполнении сгибания в локтевом суставе длинное плечо силы - предплечье - совершает больший размах движений, чем короткое плечо силы, идущей от лучевой бугристости до локтевого сустава. Таким образом, при действии на короткое плечо мышца выигрывает в скорости и расстоянии и проигрывает в силе.

В процессе построения движений у человека постоянно наблюдаются различные биомеханические особенности в смене, разделении и объединении различных рычагов, что необходимо для выполнения движений с наибольшей экономией энергии.

Рис. 1. Схема рычага. Плечи рычага (ОА и ОБ), плечи сил (OA1 и OБ1)

Рис. 2. Двуплечий рычаг первого рода, например положение головы. а - поперечная ось атлантозатылочного сочленения; бг - направление силы тяжести; ед - направление мышечной тяги; ав - плечо рычага силы тяжести; аж - плечо силы мышечной тяги

Рис. 3. Стопа как рычаг второго рода. а - точка опоры; бв - направление силы тяжести; дг - направление равнодействующей силы мышечной тяги; ае - плечо рычага силы мышечной тяги; аж - плечо рычага силы тяжести

Рис. 4. Предплечье как рычаг третьего рода. аб - направление равнодействующей мышц-сгибателей предплечья; вг - направление силы тяжести или сопротивления, же - плечо рычага силы тяжести; де - плечо рычага силы мышечной тяги; ж - плечо рычага силы тяжести; аз - 'полезная' составляющая силы мышечной тяги; ак - другая составляющая этой силы; е - поперечная ось вращения локтевого сустава

Краев А.В.,"Анатомия человека"




Сила реакций сустава.
Когда система в диаграмме свободного тела построена так, что она включает сустав, необходимо использовать понятие силы реакции сустава (Fj), чтобы учесть эффект сил, создаваемых контактом кости с костью соседних сегментов тела. Сила реакции сустава представляет суммарный эффект передачи через сустав с одного сегмента на другой усилий, вызванных мышцами, связками и контактными силами костей. При совместной активности пары мышц агонистантагонист сила реакции сустава представляет собой разность активности этих мышц. Силы реакции в суставе могут достигать значительных величин. Так, при некоторых видах движений в плечелучевом суставе они возрастают до 3 кН. С прикладной точки зрения этот эффект имеет существенное значение, например, при создании протезов, поскольку их конструкция должна выдерживать возникающие усилия.

Меньше известно о долевом вкладе суставных мягких тканей (особенно связок) в силу реакции сустава. Влияние связок на Fj противоречиво: некоторые исследователи считают его относительно малым, за исключением экстремальных положений в диапазоне движений, а также при некоторых условиях нагрузки.

Есть данные, указывающие на то, что связки могут переносить усилия в три раза повышающие силу веса тела во время ходьбы. Хорошо известно, что на силу реакции сустава влияет мышечная сила, которая раскладывается на нормальную и тангенциальную составляющие, последняя действует на сустав как сжимающая сила. Подобным образом (поскольку человеческое тело состоит из набора жестких сегментов, соединенных друг с другом) сила, действующая на один сегмент, может передаваться на все остальные сегменты тела, поэтому сила реакции земли на ногу распределяется по всему телу и влияет на Fj. Любая сила, действующая на систему, может влиять на силу реакции сустава. Более того, эффект, вызванный движением других сегментов тела и называемый силой инерции, может передаваться от одного сегмента к другому.

Крайне трудно измерить силу реакции сустава экспериментально. Обычно она оценивается путем определения всех остальных сил на диаграмме свободного тела допущением, что остаточный эффект обусловлен Fj. Это можно сделать, например, если система находится в равновесии, что означает сбалансированность всех сил, действующих на систему.

Для определения силы реакции сустава можно также использовать различные математические процедуры, например, минимизацию мышечных усилий. K. N. An и др. (1984) использовали этот подход при исследовании локтевого сустава, когда к кисти перпендикулярно предплечью прилагалась нагрузка. Полученные значения Fj превышали нагрузку в 6-16 раз при изменении угла в суставе от развернутого до прямого. Если учесть нагрузки, встречающиеся в обычной повседневной деятельности, то значения Fj, равные 0,3-0,5 веса тела, часто встречаются в локтевом суставе. Подобным образом силу реакции сустава можно определить, используя архитектуру мышцы и геометрию конечности для оценки мышечной силы.

В литературе уже известны значения силы реакции сустава для положения стоя, при переходе из сидячего положения в положение стоя, при ходьбе, беге, поднятии тяжестей и приземлении после прыжка. Например, обнаружено, что при беге со скоростью 4,5 м . с-1 максимальные значения Fj имели место в середине опорной фазы и достигали пиковой силы сжатия, равной 33-м значениям веса тела, в коленном суставе, пиковой силы сжатия в голеностопном суставе, равной 9-и значениям веса тела, и пиковой силы сдвига, равной 4-м значениям веса тела в том же суставе. Даже обычная задача перейти из вертикального положения в положение сидя на корточках и затем вернуться в исходное связана с большими силами реакции в суставах. Для этого максимальная сила реакции большеберцового сустава, которая нормальна к поверхности (сила сжатия), достигала от 4,7 до 5,6 значений веса тела, тогда как тангенциальная составляющая (сила сдвига) составляла от 3,0 до 3,9 значений веса тела.

Тяжелоатлеты-штангисты испытывают максимальные сжимающие усилия, в 17 раз превышающие вес тела, и максимальные усилия сдвига, превышающие вес тела в 2,3 раза, в суставе между позвонками L4 – L5 во время подъема штанги. Эти результаты показывают, что сила реакции в суставах существенно изменяется в зависимости от вида движений и может достигать значительных величин, особенно по сравнению с нагрузками, испытываемыми в повседневной деятельности.
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС!
ЗАВТРА может быть ПОЗДНО!
Феникс Джонатанович ДонХуанЦзы вне форума   Ответить с цитированием