Arhum.ru - Forums
Тесты IQ, узнай свой уровень IQ прямо сейчас, РОО САЛЮС
руна Гебо
от я к Я через Мы
карманный справочник мессии
Танец на Грани
Встречаясь и Сливаясь с Тенью
на Пути к Себе
О-Со-Знанность через Гармонию Целостно-Непрерывного Движения,
ОбъЕдиняющего конфликтогенные противоположности в Себе=Мы
Технологии Системы Феникс
· Новости · Группа · Фото & Видео · Семинары · Полезное · Система · Контакты ·

подробнее...

Полезные ссылки:
0.Ориентация по Форуму
1.Лунные дни
2.ХарДня
3.АстроСправочник
4.Гороскоп
5.Ветер и погода
6.Горы(Веб)
7.Китайские расчёты
8.Нумерология
9.Таро
10.Cовместимость
11.Дизайн Человека
12.ПсихоТип
13.Биоритмы
14.Время
15.Библиотека


Вернуться   Arhum.ru - Forums > Мир со ВСЕХ сторон, изнутри и снаружи. > 1 С любознательностью к миру. Общаемся. > 3 Любознательно-Познавательное > 3.6 Мир Игр

Важная информация

Ответ
 
Опции темы Поиск в этой теме Опции просмотра
Старый 11.12.2013, 09:48   #1
Феникс Джонатанович ДонХуанЦзы
Senior Member
МегаБолтун
 
Аватар для Феникс Джонатанович ДонХуанЦзы
 
Регистрация: 02.06.2006
Адрес: Москва
Сообщений: 72,188
Записей в дневнике: 4
Вес репутации: 10
Феникс Джонатанович ДонХуанЦзы отключил(а) отображение уровня репутации
По умолчанию Парадоксы

................
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС!
ЗАВТРА может быть ПОЗДНО!
Феникс Джонатанович ДонХуанЦзы вне форума   Ответить с цитированием
Старый 11.12.2013, 09:53   #2
Феникс Джонатанович ДонХуанЦзы
Senior Member
МегаБолтун
 
Аватар для Феникс Джонатанович ДонХуанЦзы
 
Регистрация: 02.06.2006
Адрес: Москва
Сообщений: 72,188
Записей в дневнике: 4
Вес репутации: 10
Феникс Джонатанович ДонХуанЦзы отключил(а) отображение уровня репутации
По умолчанию

10 УДИВИТЕЛЬНЫХ ПАРАДОКСОВ

Парадокс это мысль, которая противоречит сама себе, но и в одном и в другом случае является истиной. Логические размышления, которые будоражат умы всех мыслителей уже не один десяток лет. Представляем вам 10 парадоксов из нашей жизни, от которых вы точно будете удивлены.
Парадокс ценностей: Почему бриллианты стоят дороже, чем вода, если вода жизненно необходима для человека, в то время как бриллианты для жизни бесполезны?

Парадокс ценностей, также известный как водно-алмазный парадокс, является очевидным противоречием, вода необходима для выживания, но бриллианты имеют гораздо более высокую цену на рынке. При низких уровнях потребления, вода гораздо ценнее, чем бриллианты. Дело в том, что доступной воды на данный момент больше чем бриллиантов, и не всё человечество остро нуждается в воде. Если оценивать полезность бриллианта, то стакан воды будет куда более полезен, чем драгоценный камень, но на рынке вам никто не продаст бриллиант по цене стакана воды.

Парадокс дедушки: Что будет, если бы вы смогли вернуться назад во времени и убить своего дедушку, прежде чем он встретит вашу бабушку?

Парадокс дедушки впервые был описан писателем-фантастом Рене Баржавелем в 1943 году в книге "Le Voyageur неблагоразумно" (Неосторожный путешественник). Парадокс заключается в следующем, что было бы, если бы человек , который мог бы путешествовать во времени, переместился в то время, когда его дедушка ещё не встретил его бабушку, и убил бы его. По логике он бы просто перестал не родился на свет, так как у его дедушки не было бы потомка в лице путешествующего, а если он не родился, то соответственно он не мог бы пропутешествовать во времени и убить своего дедушку, а следовательно он бы родился. Мыслители также предполагают, что убив своего дедушку, он бы просто может измениться сам и существовать в альтернативной реальности, так как его бабушка встретила бы другого мужчину и родила ребенка, и это был бы один и тот же путешественник, только уже с другими генами.
http://www.youtube.com/watch?v=Y6RjjaEy59I
Парадокс Тесея : Если заменить все части корабля, будет ли это все тот же корабль?

Корабль Тесея, парадокс Тесея — парадокс, который можно сформулировать так: «Если все составные части исходного объекта были заменены, остаётся ли объект тем же объектом?».
Согласно греческому мифу, пересказанному Плутархом, корабль, на котором Тесей вернулся с Крита в Афины, хранился афинянами до эпохи Деметрия Фалерского, и ежегодно отправлялся со священным посольством на Делос. При починке в нём постепенно заменяли доски, до тех пор, пока среди философов не возник спор, тот ли это ещё корабль, или уже другой, новый? Кроме того, возникает вопрос: в случае постройки из старых досок второго корабля какой из них будет настоящим?
Аристотель утверждал, что это остается всё тот же корабль, так как его суть не изменилась. А другой мыслитель Терри Пратчетт, привел пример с топором, у которого в следствии износа, время от времени время меняется ручка, он утверждал, что этот топор уже не является всё тем же физически, но эмоционально это один и тот же топор.

Парадокс Галилея: Хотя квадраты чисел состоят из натуральных чисел, квадратное число всё равно будет больше количества натуральных чисел.

Парадокс Галилея демонстрирует одно из удивительных свойств бесконечных множеств. В своей последней научной работе "Две науки" , Галилей сделал противоречивые заявления о натуральных числах. Квадратные числа состоят из натуральных чисел и при увеличении квадратных чисел, количество натуральных чисел тоже будет увеличиваться, а так как количество и тех и других чисел бесконечно, то по достижению бесконечности оба числа должны сравняться. Подробнее и понятнее это парадокс объясняется в видео ниже.
http://www.youtube.com/watch?v=Y6RjjaEy59I


Парадокс бережливости: Чем больше мы откладываем на черный день, тем быстрее он наступит.

Парадокс формулируется следующим образом: «Чем больше мы откладываем на черный день, тем быстрее он наступит». Если во время экономического спада все начнут экономить, то совокупный спрос уменьшится, что повлечет за собой уменьшение зарплат и, как следствие, уменьшение сбережений. То есть можно утверждать, что когда все экономят, то это неизбежно должно привести к уменьшению совокупного спроса и замедлению экономического роста.
Проще говоря, если все люди, резко начнут экономить и откладывать деньги, то все окажутся в итоге бедными. Тем самым: чем больше у всех денег в заначке, тем все беднее. Соответственно, для экономического роста необходимо увеличивать совокупные расходы, которые будут заставлять расти совокупный доход, но это уже обратная модель, так как сбережений у людей просто не будет оставаться.

Парадокс Пиноккио: Что будет, если Пиноккио скажет: "Мой нос сейчас вырастет?"

Как известно, что у Пиноккио нос становился длиннее, если он врал, но что будет в той ситуации, если Пиноккио скажет: "Мой нос сейчас вырастет"? И любая попытка придать этому выражению статус лжи или истины приводит к бесконечному противоречию.

Парадокс парикмахера (брадобрея): Если парикмахер бреет всех, кто не бреется сам, то кто бреет парикмахера?

Представьте, что вы проходите мимо парикмахерской с табличкой, на которой написано: "Ты бреетесь сами? Если нет, то и я побрею вас! Брею любого, кто не бреется сам, и никто другой кроме меня." Всё вроде бы просто, пока в голове не возникает мысль - а кто же бреет парикмахера? Если он себя не бреет, то он относится к тем жителям деревни, которых он должен брить. Значит, он должен себя брить. Если же он себя бреет, то он не относится к тем жителям своей своей деревни, которых он должен брить. Значит, он не должен себя брить.
Этот парадокс пытался обойти ученый Бертран Рассел используя теорию множеств, ну или просто можно предположить, что парикмахер - женщина.

Парадокс дней рождения

Парадокс дней рождения — утверждение, гласящее, что если дана группа из 23 или более человек, то вероятность того, что хотя бы у двух из них дни рождения (число и месяц) совпадут, превышает 50 %. С практической точки зрения это означает, что если, например, в вашем классе более 22 учеников, то более вероятно, что у кого-то из одноклассников дни рождения придутся на один день, чем что у каждого будет свой собственный день рождения.
Для 60 и более человек вероятность такого совпадения превышает 99 %, хотя 100 % она достигает, согласно принципу Дирихле, только когда в группе не менее 367 человек (с учётом високосных лет).
Один из способов понять на интуитивном уровне, почему в группе из 23 человек вероятность совпадения дней рождения у двух человек столь высока, состоит в осознании следующего факта: поскольку рассматривается вероятность совпадения дней рождения у любых двух человек в группе, то эта вероятность определяется количеством пар людей, которые можно составить из 23 человек. Так как порядок людей в парах не имеет значения, то общее число таких пар равно числу сочетаний из 23 по 2, то есть (23 × 22)/2 = 253 пары. Посмотрев на это число, легко понять, что при рассмотрении 253 пар людей вероятность совпадения дней рождения хотя бы у одной пары будет достаточно высокой.
Ключевым моментом здесь является то, что утверждение парадокса дней рождения говорит именно о совпадении дней рождения у каких-либо двух членов группы. Одно из распространённых заблуждений состоит в том, что этот случай путают с другим — похожим, на первый взгляд, — случаем, когда из группы выбирается один человек и оценивается вероятность того, что у кого-либо из других членов группы день рождения совпадёт с днем рождения выбранного человека. В последнем случае вероятность совпадения значительно ниже.

Парадокс курицы и яйца

Вопрос, который мучает уже не одно поколение - "Что было раньше, курица или яйцо?". С помощью этого вопроса древние философы искали путь, чтобы объяснить появление жизни на земле и всей вселенной в целом. Этот парадокс описывает явление круговой череды причины и следствия. Чтобы отложить яйцо, должна быть курица, но чтобы курица отложила яйцо, она должна была родиться , всё из того же яйца.

Парадокс исчезающей клетки

Парадокс исчезающей клетки - известный класс задач (оптических иллюзий) на перестановку фигур, в которых изначально в условие введена замаскированная ошибка.



Площади закрашенных фигур, разумеется, равны между собой (32 клетки), однако, то, что визуально наблюдается как треугольники 13×5, на самом деле таковым не является, и имеет разные площади (S13×5 = 32,5 клетки). То есть ошибка, замаскированная в условии задачи, состоит в том, что начальная фигура поименована треугольником (на самом деле это — вогнутый 4-угольник). Это отчётливо заметно на рисунках 2 и 3 — «гипотенузы» верхней и нижней фигур проходят через разные точки: (8,3) вверху и (5,2) — внизу. Секрет в свойствах синего и красного треугольников. Это легко проверить вычислениями.
http://www.youtube.com/watch?v=ExUV3GOTDqE







«Гипотенуза» на самом деле является ломаной линией
источник




http://www.youtube.com/watch?v=TryOC83PH1g
http://www.youtube.com/watch?v=faQBrAQ87l4
http://www.youtube.com/watch?v=oOL2d-5-pJ8
http://www.youtube.com/watch?v=d1tn56vWU_g
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС!
ЗАВТРА может быть ПОЗДНО!
Феникс Джонатанович ДонХуанЦзы вне форума   Ответить с цитированием
Старый 25.12.2013, 18:02   #3
Феникс Джонатанович ДонХуанЦзы
Senior Member
МегаБолтун
 
Аватар для Феникс Джонатанович ДонХуанЦзы
 
Регистрация: 02.06.2006
Адрес: Москва
Сообщений: 72,188
Записей в дневнике: 4
Вес репутации: 10
Феникс Джонатанович ДонХуанЦзы отключил(а) отображение уровня репутации
По умолчанию

5 невероятных парадоксов

Парадоксы существовали со времен древних греков. При помощи логики можно быстро найти фатальный недостаток в парадоксе, который и показывает, почему, казалось бы невозможное, возможно или что весь парадокс просто построен на недостатках мышления.

1. Парадокс Ольберса

В астрофизике и физической космологии парадокс Ольберса – это аргумент, говорящий о том, что темнота ночного неба конфликтует с предположением о бесконечной и вечной статической Вселенной. Это одно из свидетельств нестатической Вселенной, такое как текущая модель Большого взрыва. Об этом аргументе часто говорят как о “темном парадоксе ночного неба”, который гласит, что под любым углом зрения с земли линия видимости закончится, достигнув звезды.
Чтобы понять это, мы сравним парадокс с нахождением человека в лесу среди белых деревьев. Если с любой точки зрения линия видимости заканчивается на верхушках деревьев, человек разве продолжает видеть только белый цвет? Это противоречит темноте ночного неба и заставляет многих людей задаться вопросом, почему мы не видим только свет от звезд в ночном небе.

2. Парадокс всемогущества

Парадокс состоит в том, что если существо может выполнять какие-либо действия, то оно может ограничить свою способность выполнять их, следовательно, оно не может выполнять все действия, но, с другой стороны, если оно не может ограничивать свои действия, то это что-то, что оно не может сделать.
Это, судя по всему, подразумевает, что способность всемогущего существа ограничивать себя обязательно означает, что оно действительно ограничивает себя. Этот парадокс часто формулируется в терминологии авраамических религий, хотя это и не является обязательным требованием.
Одна из версий парадокса всемогущества заключается в так называемом парадоксе о камне: может ли всемогущее существо создать настолько тяжелый камень, что даже оно будет не в состоянии поднять его? Если это так, то существо перестает быть всемогущим, а если нет, то существо не было всемогущим с самого начала.
Ответ на парадокс заключается в следующем: наличие слабости, такой как невозможность поднять тяжелый камень, не попадает под категорию всемогущества, хотя определение всемогущества подразумевает отсутствие слабостей.

3. Парадокс Сорита

Парадокс состоит в следующем: рассмотрим кучу песка, из которого постепенно удаляются песчинки. Можно построить рассуждение, используя утверждения:
— 1000000 песчинок – это куча песка
— куча песка минус одна песчинка – это по-прежнему куча песка.
Если без остановки продолжать второе действие, то, в конечном счете, это приведет к тому, что куча будет состоять из одной песчинки. На первый взгляд, есть несколько способов избежать этого заключения. Можно возразить первой предпосылке, сказав, что миллион песчинок – это не куча. Но вместо 1000000 может быть сколь угодно другое большое число, а второе утверждение будет верным при любом числе с любым количеством нулей.
Таким образом, ответ должен прямо отрицать существование таких вещей, как куча. Кроме того, кто-то может возразить второй предпосылке, заявив, что она верна не для всех “коллекций зерна” и что удаление одного зерна или песчинки все еще оставляет кучу кучей. Или же может заявить о том, что куча песка может состоять из одной песчинки.

4. Парадокс интересных чисел

Утверждение: не такого понятия, как неинтересное натуральное число.
Доказательство от противного: предположим, что у вас есть непустое множество натуральных чисел, которые неинтересны. Благодаря свойствам натуральных чисел, в перечне неинтересных чисел обязательно будет наименьшее число.
Будучи наименьшим числом множества его можно было бы определить как интересное в этом наборе неинтересных чисел. Но так как изначально все числа множества были определены как неинтересные, то мы пришли к противоречию, так как наименьшее число не может быть одновременно и интересным, и неинтересным. Поэтому множества неинтересных чисел должны быть пустыми, доказывая, что не существует такого понятия, как неинтересные числа.

5. Парадокс летящей стрелы

Данный парадокс говорит о том, что для того, чтобы произошло движение, объект должен изменить позицию, которую он занимает. В пример приводится движение стрелы. В любой момент времени летящая стрела остается неподвижной, потому как она покоится, а так как она покоится в любой момент времени, значит, она неподвижна всегда.
То есть данный парадокс, выдвинутый Зеноном еще в 6 веке, говорит об отсутствии движения как таковом, основываясь на том, что двигающееся тело должно дойти до половины, прежде чем завершить движение. Но так как оно в каждый момент времени неподвижно, оно не может дойти до половины. Этот парадокс также известен как парадокс Флетчера.
Стоит отметить, что если предыдущие парадоксы говорили о пространстве, то следующий парадокс – о делении времени не на сегменты, а на точки.
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС!
ЗАВТРА может быть ПОЗДНО!
Феникс Джонатанович ДонХуанЦзы вне форума   Ответить с цитированием
Старый 26.03.2014, 10:03   #4
Феникс Джонатанович ДонХуанЦзы
Senior Member
МегаБолтун
 
Аватар для Феникс Джонатанович ДонХуанЦзы
 
Регистрация: 02.06.2006
Адрес: Москва
Сообщений: 72,188
Записей в дневнике: 4
Вес репутации: 10
Феникс Джонатанович ДонХуанЦзы отключил(а) отображение уровня репутации
По умолчанию

0 удивительных парадоксов, которые поставят вас в тупик

Сломать мозг

Парадоксы можно найти везде, от экологии до геометрии и от логики до химии. Даже компьютер, на котором вы читаете статью, полон парадоксов. Перед вами — десять объяснений довольно увлекательных парадоксов. Некоторые из них настолько странные, что мы просто не можем полностью понять, в чём же суть.


1. Парадокс Банаха-Тарского


Представьте себе, что вы держите в руках шар. А теперь представьте, что вы начали рвать этот шар на куски, причём куски могут быть любой формы, какая вам нравится. После сложите кусочки вместе таким образом, чтобы у вас получилось два шара вместо одного. Каков будет размер этих шаров по сравнению с шаром-оригиналом?
Согласно теории множеств, два получившихся шара будут такого же размера и формы, как шар-оригинал. Кроме того, если учесть, что шары при этом имеют разный объём, то любой из шаров может быть преобразован в соответствии с другим. Это позволяет сделать вывод, что горошину можно разделить на шары размером с Солнце.
Хитрость парадокса заключается в том, что вы можете разорвать шары на куски любой формы. На практике сделать это невозможно — структура материала и в конечном итоге размер атомов накладывают некоторые ограничения.
Для того чтобы было действительно возможно разорвать шар так, как вам нравится, он должен содержать бесконечное число доступных нульмерных точек. Тогда шар из таких точек будет бесконечно плотным, и когда вы разорвёте его, формы кусков могут получиться настолько сложными, что не будут иметь определенного объёма. И вы можете собрать эти куски, каждый из которых содержит бесконечное число точек, в новый шар любого размера. Новый шар будет по-прежнему состоять из бесконечных точек, и оба шара будут одинаково бесконечно плотными.
Если вы попробуете воплотить идею на практике, то ничего не получится. Зато всё замечательно получается при работе с математическими сферами — безгранично делимыми числовыми множествами в трехмерном пространстве. Решённый парадокс называется теоремой Банаха-Тарского и играет огромную роль в математической теории множеств.
2. Парадокс Пето


Очевидно, что киты гораздо крупнее нас, это означает, что у них в телах гораздо больше клеток. А каждая клетка в организме теоретически может стать злокачественной. Следовательно, у китов гораздо больше шансов заболеть раком, чем у людей, так?
Не так. Парадокс Пето, названный в честь оксфордского профессора Ричарда Пето, утверждает, что корреляции между размером животного и раком не существует. У людей и китов шанс заболеть раком примерно одинаков, а вот некоторые породы крошечных мышей имеют гораздо больше шансов.
Некоторые биологи полагают, что отсутствие корреляции в парадоксе Пето можно объяснить тем, что более крупные животные лучше сопротивляются опухоли: механизм работает таким образом, чтобы предотвратить мутацию клеток в процессе деления.
3. Проблема настоящего времени


Чтобы что-то могло физически существовать, оно должно присутствовать в нашем мире в течение какого-то времени. Не может быть объекта без длины, ширины и высоты, а также не может быть объекта без «продолжительности» — «мгновенный» объект, то есть тот, который не существует хотя бы какого-то количества времени, не существует вообще.
Согласно универсальному нигилизму, прошлое и будущее не занимают времени в настоящем. Кроме того, невозможно количественно определить длительность, которую мы называем «настоящим временем»: любое количество времени, которое вы назовёте «настоящим временем», можно разделить на части — прошлое, настоящее и будущее.
Если настоящее длится, допустим, секунду, то эту секунду можно разделить на три части: первая часть будет прошлым, вторая — настоящим, третья — будущим. Треть секунды, которую мы теперь называем настоящим, можно тоже разделить на три части. Наверняка идею вы уже поняли — так можно продолжать бесконечно.
Таким образом, настоящего на самом деле не существует, потому что оно не продолжается во времени. Универсальный нигилизм использует этот аргумент, чтобы доказать, что не существует вообще ничего.
4. Парадокс Моравека


При решении проблем, требующих вдумчивого рассуждения, у людей случаются затруднения. С другой стороны, основные моторные и сенсорные функции вроде ходьбы не вызывают никаких затруднений вообще.
Но если говорить о компьютерах, всё наоборот: компьютерам очень легко решать сложнейшие логические задачи вроде разработки шахматной стратегии, но куда сложнее запрограммировать компьютер так, чтобы он смог ходить или воспроизводить человеческую речь. Это различие между естественным и искусственным интеллектом известно как парадокс Моравека.
Ханс Моравек, научный сотрудник факультета робототехники Университета Карнеги-Меллона, объясняет это наблюдение через идею реверсного инжиниринга нашего собственного мозга. Реверсный инжиниринг труднее всего провести при задачах, которые люди выполняют бессознательно, например, двигательных функциях.
Поскольку абстрактное мышление стало частью человеческого поведения меньше 100 000 лет назад, наша способность решать абстрактные задачи является сознательной. Таким образом, для нас намного легче создать технологию, которая эмулирует такое поведение. С другой стороны, такие действия, как ходьба или разговор, мы не осмысливаем, так что заставить искусственный интеллект делать то же самое нам сложнее.
5. Закон Бенфорда

Каков шанс, что случайное число начнётся с цифры «1»? Или с цифры «3»? Или с «7»? Если вы немного знакомы с теорией вероятности, то можете предположить, что вероятность — один к девяти, или около 11%.
Если же вы посмотрите на реальные цифры, то заметите, что «9» встречается гораздо реже, чем в 11% случаев. Также куда меньше цифр, чем ожидалось, начинается с «8», зато колоссальные 30% чисел начинаются с цифры «1». Эта парадоксальная картина проявляется во всевозможных реальных случаях, от количества населения до цен на акции и длины рек.
Физик Фрэнк Бенфорд впервые отметил это явление в 1938-м году. Он обнаружил, что частота появления цифры в качестве первой падает по мере того, как цифра увеличивается от одного до девяти. То есть «1» появляется в качестве первой цифры примерно в 30,1% случаев, «2» появляется около 17,6% случаев, «3» — примерно в 12,5%, и так далее до «9», выступающей в качестве первой цифры всего лишь в 4,6% случаев.
Чтобы понять это, представьте себе, что вы последовательно нумеруете лотерейные билеты. Когда вы пронумеровали билеты от одного до девяти, шанс любой цифры стать первой составляет 11,1%. Когда вы добавляете билет № 10, шанс случайного числа начаться с «1» возрастает до 18,2%. Вы добавляете билеты с № 11 по № 19, и шанс того, что номер билета начнётся с «1», продолжает расти, достигая максимума в 58%. Теперь вы добавляете билет № 20 и продолжаете нумеровать билеты. Шанс того, что число начнётся с «2», растёт, а вероятность того, что оно начнётся с «1», медленно падает.
Закон Бенфорда не распространяется на все случаи распределения чисел. Например, наборы чисел, диапазон которых ограничен (человеческий рост или вес), под закон не попадают. Он также не работает с множествами, которые имеют только один или два порядка.
Тем не менее, закон распространяется на многие типы данных. В результате власти могут использовать закон для выявления фактов мошенничества: когда предоставленная информация не следует закону Бенфорда, власти могут сделать вывод, что кто-то сфабриковал данные.
6. C-парадокс


Гены содержат всю информацию, необходимую для создания и выживания организма. Само собой разумеется, что сложные организмы должны иметь самые сложные геномы, но это не соответствует истине.
Одноклеточные амёбы имеют геномы в 100 раз больше, чем у человека, на самом деле, у них едва ли не самые большие из известных геномов. А у очень похожих между собой видов геном может кардинально различаться. Эта странность известна как С-парадокс.
Интересный вывод из С-парадокса — геном может быть больше, чем это необходимо. Если все геномы в человеческой ДНК будут использоваться, то количество мутаций на поколение будет невероятно высоким.
Геномы многих сложных животных вроде людей и приматов включают в себя ДНК, которая ничего не кодирует. Это огромное количество неиспользованных ДНК, значительно варьирующееся от существа к существу, кажется, ни от чего не зависит, что и создаёт C-парадокс.

__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС!
ЗАВТРА может быть ПОЗДНО!
Феникс Джонатанович ДонХуанЦзы вне форума   Ответить с цитированием
Старый 26.03.2014, 10:04   #5
Феникс Джонатанович ДонХуанЦзы
Senior Member
МегаБолтун
 
Аватар для Феникс Джонатанович ДонХуанЦзы
 
Регистрация: 02.06.2006
Адрес: Москва
Сообщений: 72,188
Записей в дневнике: 4
Вес репутации: 10
Феникс Джонатанович ДонХуанЦзы отключил(а) отображение уровня репутации
По умолчанию

7. Бессмертный муравей на верёвке


Представьте себе муравья, ползущего по резиновой верёвке длиной один метр со скоростью один сантиметр в секунду. Также представьте, что верёвка каждую секунду растягивается на один километр. Дойдёт ли муравей когда-нибудь до конца?
Логичным кажется то, что нормальный муравей на такое не способен, потому что скорость его движения намного ниже скорости, с которой растягивается верёвка. Тем не менее, в конечном итоге муравей доберётся до противоположного конца.
Когда муравей ещё даже не начал движение, перед ним лежит 100% верёвки. Через секунду верёвка стала значительно больше, но муравей тоже прошёл некоторое расстояние, и если считать в процентах, то расстояние, которое он должен пройти, уменьшилось — оно уже меньше 100%, пусть и ненамного.
Хотя верёвка постоянно растягивается, маленькое расстояние, пройденное муравьём, тоже становится больше. И, хотя в целом верёвка удлиняется с постоянной скоростью, путь муравья каждую секунду становится немного меньше. Муравей тоже всё время продолжает двигаться вперёд с постоянной скоростью. Таким образом, с каждой секундой расстояние, которое он уже прошёл, увеличивается, а то, которое он должен пройти — уменьшается. В процентах, само собой.
Существует одно условие, чтобы задача могла иметь решение: муравей должен быть бессмертным. Итак, муравей дойдёт до конца через 2,8×1043.429 секунд, что несколько дольше, чем существует Вселенная.
8. Парадокс экологического баланса


Модель «хищник-жертва» — это уравнение, описывающее реальную экологическую обстановку. Например, модель может определить, насколько изменится численность лис и кроликов в лесу. Допустим, что травы, которой питаются кролики, в лесу становится всё больше. Можно предположить, что для кроликов такой исход благоприятен, потому что при обилии травы они будут хорошо размножаться и увеличивать численность.
Парадокс экологического баланса утверждает, что это не так: сначала численность кроликов действительно возрастёт, но рост популяции кроликов в закрытой среде (лесу) приведёт к росту популяции лисиц. Затем численность хищников увеличится настолько, что они уничтожат сначала всю добычу, а потом вымрут сами.
На практике этот парадокс не действует на большинство видов животных — хотя бы потому, что они не живут в закрытой среде, поэтому популяции животных стабильны. Кроме того, животные способны эволюционировать: например, в новых условиях у добычи появятся новые защитные механизмы.
9. Парадокс тритона

Соберите группу друзей и посмотрите все вместе это видео. Когда закончите, пусть каждый выскажет своё мнение, увеличивается звук или уменьшается во время всех четырёх тонов. Вы удивитесь, насколько разными будут ответы.
Чтобы понять этот парадокс, вам нужно знать кое-что о музыкальных нотах. У каждой ноты есть определённая высота, от которой зависит, высокий или низкий звук мы слышим. Нота следующей, более высокой октавы, звучит в два раза выше, чем нота предыдущей октавы. А каждую октаву можно разделить на два равных тритонных интервала.
На видео тритон разделяет каждую пару звуков. В каждой паре один звук представляет собой смесь одинаковых нот из разных октав — например, сочетание двух нот до, где одна звучит выше другой. Когда звук в тритоне переходит с одной ноты на другую (например, соль-диез между двумя до), можно совершенно обоснованно интерпретировать ноту как более высокую или более низкую, чем предыдущая.
Другое парадоксальное свойство тритонов — это ощущение, что звук постоянно становится ниже, хотя высота звука не меняется. На нашем видео вы можете наблюдать эффект в течение целых десяти минут.

10. Эффект Мпембы



Перед вами два стакана воды, совершенно одинаковые во всём, кроме одного: температура воды в левом стакане выше, чем в правом. Поместите оба стакана в морозилку. В каком стакане вода замёрзнет быстрее? Можно решить, что в правом, в котором вода изначально была холоднее, однако горячая вода замёрзнет быстрее, чем вода комнатной температуры.
Этот странный эффект назван в честь студента из Танзании, который наблюдал его в 1986-м году, когда замораживал молоко, чтобы сделать мороженое. Некоторые из величайших мыслителей — Аристотель, Фрэнсис Бэкон и Рене Декарт — и ранее отмечали это явление, но не были в состоянии объяснить его. Аристотель, например, выдвигал гипотезу, что какое-либо качество усиливается в среде, противоположной этому качеству.
Эффект Мпембы возможен благодаря нескольким факторам. Воды в стакане с горячей водой может быть меньше, так как часть её испарится, и в результате замёрзнуть должно меньшее количество воды. Также горячая вода содержит меньше газа, а значит, в такой воде легче возникнут конвекционные потоки, следовательно, замерзать ей будет проще.
Другая теория строится на том, что ослабевают химические связи, удерживающие молекулы воды вместе. Молекула воды состоит из двух атомов водорода, связанных с одним атомом кислорода. Когда вода нагревается, молекулы немного отодвигаются друг от друга, связь между ними ослабевает, и молекулы теряют немного энергии — это позволяет горячей воде остывать быстрее, чем холодной.
Источник
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС!
ЗАВТРА может быть ПОЗДНО!
Феникс Джонатанович ДонХуанЦзы вне форума   Ответить с цитированием
Старый 04.08.2014, 13:31   #6
Феникс Джонатанович ДонХуанЦзы
Senior Member
МегаБолтун
 
Аватар для Феникс Джонатанович ДонХуанЦзы
 
Регистрация: 02.06.2006
Адрес: Москва
Сообщений: 72,188
Записей в дневнике: 4
Вес репутации: 10
Феникс Джонатанович ДонХуанЦзы отключил(а) отображение уровня репутации
По умолчанию

10 любопытных мысленных экспериментов и парадоксов



В последующие века, после того как древние греки первыми их вывели, парадоксы процветали во всех слоях общества, радуя и приводя в бешенство миллионы людей. Некоторые из них представляют проблемы с нелогичными ответами, остальные — неразрешимые проблемы. Мы выбрали десятку самых любопытных и малоизвестных.


Демон Максвелла



Названный в честь шотландского физика 19 века, первым предложившим эту идею, «демон Максвелла» — это мысленный эксперимент, в котором Джеймс Клерк Максвелл пытался нарушить второй закон термодинамики. Законы Ньютона остаются нерушимыми, поэтому сам факт возможности их нарушения привел к парадоксу.

Есть коробка, заполненная газом неопределенной температуры. В середине коробки есть стенка. Некий демон открывает отверстие в стене, позволяя только быстрым (в среднем) молекулам проникнуть в левую часть коробки. Таким образом, демон создает две отдельные зоны: горячую и холодную. Разделение температур позволяет, в свою очередь, генерировать энергию, позволяя потоку молекул перетекать от горячей к холодной областям через тепловой двигатель. На первый взгляд, такая система должна нарушить второй закон Ньютона, который утверждает, что энтропию изолированной системы невозможно изменить.

Однако второй закон говорит и то, что демон не сможет делать это без ежеминутной потери своей энергии. Такое опровержение было впервые предложено венгерским физиком Лео Сцилардом. Смысл этого аргумента в том, что демон будет генерировать энтропию простым измерением того, какие молекулы движутся быстрее среднего. Кроме того, движение дверей и движение демона тоже будет генерировать энтропию.
Лампа Томсона



Джеймс Томсон был британским философом, жившим в 20 веке. Его наиболее заметным вкладом стал парадокс, известный как «лампа Томсона», головоломка, связанная с таким явлением, как сверхзадачи. (Сверхзадачи — это счетные бесконечные последовательности, которые происходят в определенном порядке в конечное время).

Проблема такова. Есть лампа с кнопкой. Нажатие кнопки включает и выключает свет. Если каждое последующее нажатие кнопки будет занимать в два раза меньше времени, чем предыдущее, будет ли свет включен или выключен спустя заданный промежуток времени?

Благодаря природе бесконечности, невозможно узнать, будет ли свет включен или выключен, поскольку последнего нажатия на кнопку просто не будет. За любое время, хоть за две минуты, хоть за десять, на выключатель придется нажать бесконечное число раз. Сверхзадачи были впервые предложены Зеноном Элейским, а Томсон довел эту задачу до парадокса. Некоторые философы вроде Пола Бенасеррафа все еще утверждают, что машины вроде лампы Томсона как минимум логически возможны.
Проблема двух конвертов



Менее известный двоюродный брат «парадокса Монти Холла» — «проблема двух конвертов» — объясняется следующим образом. Человек показывает вам два конверта. Он говорит, что в одном лежит определенная сумма долларов, а в другом — в два раза больше. Вам нужно выбрать конверт и проверить содержимое. Затем вы можете выбрать: оставить себе конверт или взять другой. Какой даст вам больше денег? При условии, что вы не знаете, сколько конкретно денег лежит в вашем или другом конверте.

Изначально ваш шанс взять конверт с большим количеством денег составляет 50/50, или 1 к 2. Самая распространенная ошибка, которую допускают при вычислении лучшего варианта, заключается в следующей формуле, где Y — ценность конверта в вашей руке: 1/2(2Y) + 1/2(Y/2) = 1,25Y. Проблема этого решения в том, что вам нужно сделать бесконечное число выборов, поскольку именно так вы будете получать больше денег. В этом и парадокс. Было выдвинуто много решений, но ни один из них не был принят широко.
Парадокс мальчика или девочки



Допустим, в семье есть двое детей. Учитывая то, что вероятность наличия мальчика равна 1/2, каковы шансы того, что другой ребенок тоже мальчик? Интуиция подсказывает, что опять 1/2, но это не так. Правильный ответ — 1/3.

Есть четыре варианта для семьи с двумя детьми: старший брат с младшей сестрой (МД), старший брат с младшим братом (ББ), старшая сестра с младшим братом (ДМ) или старшая сестра с младшей сестрой (ДД). Мы знаем, что вариант ДД невозможен, потому что в семье уже есть один мальчик. Таким образом, возможны лишь варианты МД, ББ и ДМ. Вероятность 1/3. Можно еще поспорить о близнецах, но технически они рождаются не одновременно.
Дилемма крокодила



Разновидность парадокса лжеца, которую популяризовал древнегреческий философ Евболид. «Дилемма крокодила» сложилась следующим образом. Крокодил украл ребенка у его родителя и затем говорит родителю, что вернет ребенка, если родитель правильно угадает, вернет ли крокодил ребенка или нет. Если родитель скажет «ты вернешь мое дитя», все в порядке и ребенок вернется. Но если родитель скажет «ты не вернешь моего ребенка», возникает парадокс.

Парадокс в том, что если крокодил вернет ребенка, он нарушит свое слово, так как родитель не угадал. Однако если крокодил не вернет ребенка, он тоже нарушит свое слово, так как родитель угадал. Видимо, ребенку уготовано остаться в пасти крокодила, поскольку пара никогда не договорится. Псевдорешение этого парадокса — тайно уведомить третью сторону в истинном намерении крокодила. Тогда крокодил сдержит свое обещание вне зависимости от ответа.
Парадокс слабого молодого Солнца



Этот астрофизический парадокс возник, когда мы осознали, что наше Солнце почти на 40% ярче, чем было почти четыре миллиарда лет назад. Однако, если это действительно было так, Земля должна была получать намного меньше тепла в прошлом, а значит поверхность планеты была бы сплошь заморожена. Впервые поднятый ученым Карлом Саганом в 1972 году, парадокс слабого молодого Солнца поставил в тупик все научное сообщество, поскольку геологические свидетельства показывают, что нашу планету покрывали океаны почти всегда.

В качестве возможного решения были предложены парниковые газы. Но их уровень должен был быть в сотни или тысячи раз выше, чем сейчас. Плюс есть масса свидетельств того, что такого не было. Возможно, свою роль сыграла некая «планетарная эволюция». Согласно этой теории, условия Земли (вроде химического состава атмосферы) менялись по мере развития жизни.
Парадокс Гемпеля



Известный также как «парадокс воронов», парадокс Гемпеля — это вопрос о природе доказательств. Он начинается с утверждения «все вороны черные» и логически контрапозитивного заявления «все не черные вещи — не вороны». Затем философ утверждает, что всякий раз, когда видно ворона — а все вороны черные — первое утверждение подтверждается. Кроме того, всякий раз, когда видно не черный объект вроде зеленого яблока, подтверждается второе утверждение.

Парадокс возникает потому, что каждое зеленое яблоко также предоставляет доказательства того, что все вороны черные, так как две гипотезы логически эквивалентны. Наиболее широко распространенным «решением» проблемы будет договоренность о том, что каждое зеленое яблоко (или белый лебедь) приводит доказательство того, что вороны черные, но с оговоркой, что количество доказательств будет настолько малым, что станет несущественным.
Парадокс парикмахерской



В июле 1894 года в Mind (британский научный журнал) Льюис Кэрролл, автор «Алисы в Стране Чудес», предложил парадокс, известный как «парадокс парикмахерской». Выглядит он так. Дядя Джо и дядя Джим шли к парикмахерской, обсуждая трех парикмахеров — Карра, Аллена и Брауна. Дядя Джим хотел, чтобы его стриг Карр, но не был уверен, что Карр работает. Один из трех парикмахеров работал, потому что парикмахерская была открыта. Они также знали, что Аллен никогда не уходит из парикмахерской без Брауна.

Дядя Джо утверждал, что может логически доказать, что Карр работает, потому что он должен работать всегда, поскольку Браун не будет работать без Аллена. Однако парадокс в том, что Аллен мог быть внутри, а Браун мог быть дома. Дядя Джо утверждал, что это приводит к двум противоречивым заявлениям, а значит Карр должен быть внутри. Современные логики доказали, что технически это не парадокс. Единственное, что имеет значение — если Карр не работает, значит, работает Аллен, а кому какое дело до Брауна?
Парадокс Галилея



Более известный своими работами в астрономии, Галилей также пробовал себя и в математике и вывел парадокс о бесконечности и квадратах натуральных чисел. Он первым заявил, что есть некоторые положительные целые числа, которые являются квадратами, и некоторые, которые не являются. Таким образом, он предположил, что сумма этих двух групп должна быть больше суммы только группы квадратов. Выглядит здраво.

Тем не менее парадокс возникает потому, что у любого натурального числа есть квадрат, а у каждого квадрата — натуральное положительное число, которое будет его квадратным корнем. Выходит, что есть соответствие один-к-одному у квадратов натуральных чисел и понятия бесконечности. Это подтверждает идею, что подмножество бесконечных чисел может быть настолько же большим, как и набор бесконечных чисел, из которых вытекает это подмножество. Хотя может показаться, что это не так.
Проблема спящей красавицы



Спящая красавица ложится спать в воскресенье и монета подбрасывается. Если выпадает «решка», принцесса просыпается в понедельник, дает интервью и снова ложится спать, принимая снотворное. Если монетка падает на «орла», принцесса просыпается в понедельник и вторник, каждый раз дает интервью и снова ложится спать. Независимо от результата, она просыпается в среду и эксперимент завершается.

Парадокс возникает, когда вы пытаетесь выяснить, как она должна ответить на вопрос: «Как думаешь, как упала монетка?». Даже если учесть, что вероятность определения монетки 1/2, далеко не ясно, что спящая красавица должна сказать на самом деле. Некоторые утверждают, что фактическая вероятность 1/3, поскольку она не знает, какой был день, когда она проснулась. Есть три возможности: решка в понедельник, орел в понедельник и орел во вторник. Получается, ей нужно сказать «орел».

Читать подробнее →
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС!
ЗАВТРА может быть ПОЗДНО!
Феникс Джонатанович ДонХуанЦзы вне форума   Ответить с цитированием
Старый 21.11.2014, 20:25   #7
Феникс Джонатанович ДонХуанЦзы
Senior Member
МегаБолтун
 
Аватар для Феникс Джонатанович ДонХуанЦзы
 
Регистрация: 02.06.2006
Адрес: Москва
Сообщений: 72,188
Записей в дневнике: 4
Вес репутации: 10
Феникс Джонатанович ДонХуанЦзы отключил(а) отображение уровня репутации
По умолчанию

Десять наиболее интересных парадоксов

1. Парадокс всемогущества

Это довольно известный парадокс, который звучит следующим образом: «Попросите всемогущего человека создать камень, который он сам не сможет поднять.» Если создать такой камень не получится, значит человек не всемогущ, а если получится — то человек утратит своё всемогущество.

Ответов тут может быть несколько. Возможно, абсолютного всемогущества попросту не существует. Также можно сказать, что всемогущее существо не ограниченно законами логики, поэтому может делать всё, что захочет.

2. Парадокс черепахи Этот парадокс был придуман древнегреческим философом Зеноном. Суть его такова: предположим, что Ахиллес бежит в 10 раз быстрее черепахи и находится за 1000 шагов от неё. Пока Ахиллес пробежит 1000 шагов, черепаха проползёт ещё 100 шагов. Когда Ахиллес пробежит 100 шагов, черепаха проползёт ещё 10 шагов, и так до бесконечности. В итоге Ахиллес так и не догонит черепаху. Естественно все мы понимаем, что в реальной жизни он бы её наверняка и догнал, и перегнал.

Парадокс можно объяснить тем, что в реальности пространство и время нельзя делить бесконечно.

3. Парадокс убитого дедушки

Данный парадокс придумал французский писателеь-фантаст Рене Баржавель. Допустим, что человек создал машину времени, отправился в прошлое и убил там своего биологического деда в раннем детстве. В итоге один из родителей путешественника не был рождён. Соответственно и сам путешественник тоже не появился на свет. А это значит, что в итоге он не отправился в прошлое и не убил там своего деда и остался жив.Вариантов решения парадокса опять таки несколько. Может быть, переместиться в прошлое попросту невозможно. А может быть, путешественник просто не сможет его изменить. Также есть мнение, что отправившись в прошлое, путешественник создаст ещё одну альтернативную реальность, в которой он никогда не будет рождён.

4. Корабль Тесея

Согласно древнегреческому мифу, жители Афин долгое время хранили корабль, на котором Тесей вернулся с острова Крит. Со временем корабль начал гнить, поэтому в нём постепенно начали менять доски. В определённый момент все доски корабля были заменены на новые. В итоге возник вполне закономерный вопрос: «Тот ли это ещё корабль или уже совсем другой?» Помимо этого, появился ещё один вопрос: «Что, если из старых досок собрать ещё один такой-же корабль, то какой из них будет настоящим?»

В современной трактовке этот парадокс звучит так: «Если в исходном объекте заменить постепенно все составные части, останется ли он тем-же объектом?»

Ответ может быть таким: любой предмет может быть «тем-же» количественно и качественно. Это значит, что после смены досок корабль Тесея количественно будет тем-же кораблём, а вот качественно — уже другим.

5. Парадокс кучи

Предположим, у нас есть куча зёрен. Если из неё убирать по одному зерну, то когда она перестанет быть кучей? будет ли она кучей, если в ней останется только одно зерно? Объясняется парадокс тем, что у термина «куча» нет точного определения.

6. Парадокс Абилина

Парадокс звучит следующим образом: «В один жаркий вечер некая семья играла на крыльце дома в домино, пока тесть не предложил поехать отдохнуть в Абилин. Поездка обещала быть долгой и утомительной. Тем не менее жена сразу-же согласилась ехать, сказав «Неплохая идея!» Муж никуда ехать не хотел, однако решил подстроиться под остальных и сказал, что ему эта идея тоже кажется весьма неплохой. Наконец тёща тоже согласилась на поездку. Дорога до Абилина оказалась весьма утомительной и жаркой, так что отдых не удался. Через несколько часов семья приехала обратно домой. Тёща сказала, что поездка ей не понравилась и поехала она только ради остальных. Муж сказал, что он тоже рад был бы не ехать, но согласился на поездку, чтобы не портить остальным настроение. Жена в свою очередь сказала, что и ей никуда не хотелось ехать, она просто хотела подстроиться под всех остальных. Наконец сам тесть сказал, что предложил поездку только потому, что окружающая обстановка показалась ему скучноватой. Таким образом, никто из них не хотел ехать в Абилин и согласился только ради остальных.»

Данный парадокс является типичным примером группового мышления.

7. Парадокс Греллинга

Разделим все прилагательные на две группы: автологические и гетерологические. Автологические прилагательные — это те, которые характеризуют сами себя. Например, прилагательное «многосложное» является многосложным, а прилагательное «русское» является русским.

Гетерологические прилагательные — это те, которые не характеризуют сами себя. Например, прилагательное «новое» не является новым, а прилагательное «немецкое» не является немецким.

Парадокс возникает в том случае, когда необходимо определить прилагательное «гетерологическое» к одной из двух групп. Если оно характеризует само себя, то является автологическим, а не гетерологическим.

8. Парадокс мэров

В одной стране вышел указ «Мэры всех городов должны проживать не в своём городе, а специальном городе для мэров.» Возникает вопрос: «Где должен жить мэр города мэров?»

9. Парадокс неожиданной казни

Одному заключённому сказали: «Вас казнят в полдень следующей среды. Это будет неожиданностью для вас.» Заключённый приходит к выводу что раз он знает точное время казни, то казнь никак не сможет стать для него неожиданной, а значит его не смогут казнить. В полдень следующей среды за ним действительной приходит палач и его казнят. И казнь действительно ставится неожиданностью для заключённого.

10. Парадокс Эватла

Это древняя логическая задача, суть которой такова: «Некий учитель Протагор взял к себе в ученики Эватла и начал обучать его судебному делу. Эватл пообещал оплатить всё обучение как только выиграет своё первое дело. Однако после обучения Эватл не спешил работать. Тогда Протагор подал на него в суд. В итоге судья так и не смог вынести какое-либо решение, ведь если Эватл выиграет это дело, то он обязан будет отдать деньги Протагору. Таким образом он на самом деле проиграет, а значит ему не нужно будет оплачивать свою учёбу Протагору. И так до бесконечности.
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС!
ЗАВТРА может быть ПОЗДНО!
Феникс Джонатанович ДонХуанЦзы вне форума   Ответить с цитированием
Старый 25.11.2014, 08:53   #8
Феникс Джонатанович ДонХуанЦзы
Senior Member
МегаБолтун
 
Аватар для Феникс Джонатанович ДонХуанЦзы
 
Регистрация: 02.06.2006
Адрес: Москва
Сообщений: 72,188
Записей в дневнике: 4
Вес репутации: 10
Феникс Джонатанович ДонХуанЦзы отключил(а) отображение уровня репутации
По умолчанию

12 невероятных парадоксов.

Парадоксы существовали со времен древних греков. При помощи логики можно быстро найти фатальный недостаток в парадоксе, который и показывает, почему, казалось бы невозможное, возможно или что весь парадокс просто построен на недостатках мышления.
А вы сможете понять, в чем недостаток каждого из ниже перечисленных парадоксов?

12. Парадокс Ольберса

В астрофизике и физической космологии парадокс Ольберса – это аргумент, говорящий о том, что темнота ночного неба конфликтует с предположением о бесконечной и вечной статической Вселенной. Это одно из свидетельств нестатической Вселенной, такое как текущая модель Большого взрыва. Об этом аргументе часто говорят как о “темном парадоксе ночного неба”, который гласит, что под любым углом зрения с земли линия видимости закончится, достигнув звезды.
Чтобы понять это, мы сравним парадокс с нахождением человека в лесу среди белых деревьев. Если с любой точки зрения линия видимости заканчивается на верхушках деревьев, человек разве продолжает видеть только белый цвет? Это противоречит темноте ночного неба и заставляет многих людей задаться вопросом, почему мы не видим только свет от звезд в ночном небе.

11. Парадокс всемогущества

Парадокс состоит в том, что если существо может выполнять какие-либо действия, то оно может ограничить свою способность выполнять их, следовательно, оно не может выполнять все действия, но, с другой стороны, если оно не может ограничивать свои действия, то это что-то, что оно не может сделать.
Это, судя по всему, подразумевает, что способность всемогущего существа ограничивать себя обязательно означает, что оно действительно ограничивает себя. Этот парадокс часто формулируется в терминологии авраамических религий, хотя это и не является обязательным требованием.
Одна из версий парадокса всемогущества заключается в так называемом парадоксе о камне: может ли всемогущее существо создать настолько тяжелый камень, что даже оно будет не в состоянии поднять его? Если это так, то существо перестает быть всемогущим, а если нет, то существо не было всемогущим с самого начала.
Ответ на парадокс заключается в следующем: наличие слабости, такой как невозможность поднять тяжелый камень, не попадает под категорию всемогущества, хотя определение всемогущества подразумевает отсутствие слабостей.

10. Парадокс Сорита

Парадокс состоит в следующем: рассмотрим кучу песка, из которого постепенно удаляются песчинки. Можно построить рассуждение, используя утверждения:
— 1000000 песчинок – это куча песка
— куча песка минус одна песчинка – это по-прежнему куча песка.
Если без остановки продолжать второе действие, то, в конечном счете, это приведет к тому, что куча будет состоять из одной песчинки. На первый взгляд, есть несколько способов избежать этого заключения. Можно возразить первой предпосылке, сказав, что миллион песчинок – это не куча. Но вместо 1000000 может быть сколь угодно другое большое число, а второе утверждение будет верным при любом числе с любым количеством нулей.
Таким образом, ответ должен прямо отрицать существование таких вещей, как куча. Кроме того, кто-то может возразить второй предпосылке, заявив, что она верна не для всех “коллекций зерна” и что удаление одного зерна или песчинки все еще оставляет кучу кучей. Или же может заявить о том, что куча песка может состоять из одной песчинки.

9. Парадокс интересных чисел

Утверждение: не такого понятия, как неинтересное натуральное число.
Доказательство от противного: предположим, что у вас есть непустое множество натуральных чисел, которые неинтересны. Благодаря свойствам натуральных чисел, в перечне неинтересных чисел обязательно будет наименьшее число.
Будучи наименьшим числом множества его можно было бы определить как интересное в этом наборе неинтересных чисел. Но так как изначально все числа множества были определены как неинтересные, то мы пришли к противоречию, так как наименьшее число не может быть одновременно и интересным, и неинтересным. Поэтому множества неинтересных чисел должны быть пустыми, доказывая, что не существует такого понятия, как неинтересные числа.

8. Парадокс летящей стрелы

Данный парадокс говорит о том, что для того, чтобы произошло движение, объект должен изменить позицию, которую он занимает. В пример приводится движение стрелы. В любой момент времени летящая стрела остается неподвижной, потому как она покоится, а так как она покоится в любой момент времени, значит, она неподвижна всегда.
То есть данный парадокс, выдвинутый Зеноном еще в 6 веке, говорит об отсутствии движения как таковом, основываясь на том, что двигающееся тело должно дойти до половины, прежде чем завершить движение. Но так как оно в каждый момент времени неподвижно, оно не может дойти до половины. Этот парадокс также известен как парадокс Флетчера.
Стоит отметить, что если предыдущие парадоксы говорили о пространстве, то следующий парадокс – о делении времени не на сегменты, а на точки.

7. Парадокс Ахиллеса и черепахи
В данном парадоксе Ахиллес бежит за черепахой, предварительно дав ей фору в 30 метров. Если предположить, что каждый из бегунов начал бежать с определенной постоянной скоростью (один очень быстро, второй очень медленно), то через некоторое время Ахиллес, пробежав 30 метров, достигнет той точки, от которой двинулась черепаха. За это время черепаха “пробежит” гораздо меньше, скажем, 1 метр.
Затем Ахиллесу потребуется еще какое-то время, чтобы преодолеть это расстояние, за которое черепаха продвинется еще дальше. Достигнув третьей точки, в которой побывала черепаха, Ахиллес продвинется дальше, но все равно не нагонит ее. Таким образом, всякий раз, когда Ахиллес будет достигать черепаху, она все равно будет впереди.
Таким образом, поскольку существует бесконечное количество точек, которых Ахиллес должен достигнуть, и в которых черепаха уже побывала, он никогда не сможет догнать черепаху. Конечно, логика говорит нам о том, что Ахиллес может догнать черепаху, потому это и является парадоксом.
Проблема этого парадокса заключается в том, что в физической реальности невозможно бесконечно пересекать поперечно точки – как вы можете попасть из одной точки бесконечности в другую, не пересекая при этом бесконечность точек? Вы не можете, то есть, это невозможно.
Но в математике это не так. Этот парадокс показывает нам, как математика может что-то доказать, но в действительности это не работает. Таким образом, проблема данного парадокса в том, что происходит применение математических правил для нематематических ситуаций, что и делает его неработающим.

6. Парадокс Буриданова осла

Это образное описание человеческой нерешительности. Это относится к парадоксальной ситуации, когда осел, находясь между двумя абсолютно одинаковыми по размеру и качеству стогами сена, будет голодать до смерти, поскольку так и не сможет принять рациональное решение и начать есть.
Парадокс назван в честь французского философа 14 века Жана Буридана (Jean Buridan), однако, он не был автором парадокса. Он был известен еще со времен Аристотеля, который в одном из своих трудов рассказывает о человеке, который был голоден и хотел пить, но так как оба чувства были одинаково сильны, а человек находился между едой и питьем, он так и не смог сделать выбора.
Буридан, в свою очередь, никогда не говорил о данной проблеме, но затрагивал вопросы о моральном детерминизме, который подразумевал, что человек, столкнувшись с проблемой выбора, безусловно, должен выбирать в сторону большего добра, но Буридан допустил возможность замедления выбора с целью оценки всех возможных преимуществ. Позднее другие авторы отнеслись с сатирой к этой точке зрения, говоря об осле, который столкнувшись с двумя одинаковыми стогами сена, будет голодать, принимая решение.

5. Парадокс неожиданной казни

Судья говорит осужденному, что он будет повешен в полдень в один из рабочих дней на следующей неделе, но день казни будет для заключенного сюрпризом. Он не будет знать точную дату, пока палач в полдень не придет к нему в камеру. После, немного порассуждав, преступник приходит к выводу, что он сможет избежать казни.
Его рассуждения можно разделить на несколько частей. Начинает он с того, что его не могут повесить в пятницу, так как если его не повесят в четверг, то пятница уже не будет неожиданностью. Таким образом, пятницу он исключил. Но тогда, так как пятница уже вычеркнута из списка, он пришел к выводу, что он не может быть повешенным и в четверг, потому что если его не повесят в среду, то четверг тоже не будет неожиданностью.
Рассуждая аналогичным образом, он последовательно исключил все оставшиеся дни недели. Радостным он ложится спать с уверенностью, что казни не произойдет вовсе. На следующей неделе в полдень среды к нему в камеру пришел палач, поэтому, несмотря на все его рассуждения, он был крайне удивлен. Все, что сказал судья, сбылось.

4. Парадокс парикмахера

Предположим, что существует город с одним мужским парикмахером, и что каждый мужчина в городе бреется налысо: некоторые самостоятельно, некоторые с помощью парикмахера. Кажется разумным предположить, что процесс подчиняется следующему правилу: парикмахер бреет всех мужчин и только тех, кто не бреется сам.
Согласно этому сценарию, мы можем задать следующий вопрос: парикмахер бреет себя сам? Однако, спрашивая это, мы понимаем, что ответить на него правильно невозможно:
— если парикмахер не бреется сам, он должен соблюдать правила и брить себя сам;
— если он бреет себя сам, то по тем же правилам он не должен брить себя сам.

3. Парадокс Эпименида

Этот парадокс вытекает из заявления, в котором Эпименид , противореча общему убеждению Крита, предположил, что Зевс был бессмертным, как в следующем стихотворении:
Они создали гробницу для тебя, высший святой
Критяне, вечные лжецы, злые звери, рабы живота!
Но ты не умер: ты жив и будешь жив всегда,
Ибо ты живешь в нас, а мы существуем.
Тем не менее, он не осознавал, что называя всех критян лжецами, он невольно и самого себя называл обманщиком, хотя он и “подразумевал”, что все критяне, кроме него. Таким образом, если верить его утверждению, и все критяне лжецы на самом деле, он тоже лжец, а если он лжец, то все критяне говорят правду. Итак, если все критяне говорят правду, то и он в том числе, а это означает, исходя из его стиха, что все критяне лжецы. Таким образом, цепочка рассуждений возвращается в начало.

2. Парадокс Эватла

Это очень старая задача в логике, вытекающая из Древней Греции. Говорят, что знаменитый софист Протагор взял к себе на учение Эватла, при этом, он четко понимал, что ученик сможет заплатить учителю только после того, как он выиграет свое первое дело в суде.
Некоторые эксперты утверждают, что Протагор потребовал деньги за обучение сразу же после того, как Эватл закончил свою учебу, другие говорят, что Протагор подождал некоторое время, пока не стало очевидно, что ученик не прикладывает никаких усилий для того, чтобы найти клиентов, третьи же уверены в том, что Эватл очень старался, но клиентов так и не нашел. В любом случае, Протагор решил подать в суд на Эватла, чтобы тот вернул долг.
Протагор утверждал, что если он выиграет дело, то ему будут выплачены его деньги. Если бы дело выиграл Эватл, то Протагор по-прежнему должен был получить свои деньги в соответствии с первоначальным договором, потому что это было бы первое выигрышное дело Эватла.
Эватл, однако, стоял на том, что если он выиграет, то по решению суда ему не придется платить Протагору. Если, с другой стороны, Протагор выиграет, то Эватл проигрывает свое первое дело, поэтому и не должен ничего платить. Так кто же из мужчин прав?

1. Парадокс непреодолимой силы

Парадокс непреодолимой силы представляет собой классический парадокс, сформулированный как “что происходит, когда непреодолимая сила встречает неподвижный объект?” Парадокс следует воспринимать как логическое упражнение, а не как постулирование возможной реальности.
Согласно современным научным пониманиям, никакая сила не является полностью неотразимой, и не существует и быть не может полностью недвижимых объектов, так как даже незначительная сила будет вызывать небольшое ускорение объекта любой массы. Неподвижный предмет должен иметь бесконечную инерцию, а, следовательно, и бесконечную массу. Такой объект будет сжиматься под действием собственной силы тяжести. Непреодолимой силе потребуется бесконечная энергия, которая не существует в конечной Вселенной.
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС!
ЗАВТРА может быть ПОЗДНО!
Феникс Джонатанович ДонХуанЦзы вне форума   Ответить с цитированием
Старый 23.01.2015, 16:18   #9
Феникс Джонатанович ДонХуанЦзы
Senior Member
МегаБолтун
 
Аватар для Феникс Джонатанович ДонХуанЦзы
 
Регистрация: 02.06.2006
Адрес: Москва
Сообщений: 72,188
Записей в дневнике: 4
Вес репутации: 10
Феникс Джонатанович ДонХуанЦзы отключил(а) отображение уровня репутации
По умолчанию

«Существуют три вида лжи: ложь, наглая ложь и статистика». Эта фраза, приписанная Марком Твеном премьер-министру Великобритании Бенджамину Дизраэли, неплохо отражает отношение большинства к математическим закономерностям. Действительно, теория вероятностей порой подкидывает удивительные факты, в которые сложно поверить с первого взгляда — и которые, тем не менее, подтверждены наукой.

⚠ Проблема Монти Холла

Именно эту задачу в фильме «Двадцать одно» предложил студентам хитрый профессор MIT. Дав верный ответ, главный герой попадает в команду блестящих молодых математиков, обыгрывающих казино в Лас-Вегасе.

Классическая формулировка звучит так: «Допустим, некоему игроку предложили поучаствовать в известном американском телешоу Let’s Make a Deal, которое ведет Монти Холл, и ему необходимо выбрать одну из трех дверей. За двумя дверьми находятся козы, за одной — главный приз, автомобиль, ведущий знает расположение призов. После того, как игрок делает свой выбор, ведущий открывает одну из оставшихся дверей, за которой находится коза, и предлагает игроку изменить свое решение. Стоит ли игроку согласиться или лучше сохранить свой первоначальный выбор?»

Вот типичный ход рассуждений: после того, как ведущий открыл одну из дверей и показал козу, игроку остается выбрать между двумя дверями. Машина находится за одной из них, значит, вероятность ее угадать составляет ½. Так что нет разницы — менять свой выбор или нет. И тем не менее, теория вероятностей гласит, что можно увеличить свои шансы на выигрыш, изменив решение. Разберемся, почему это так.

Для этого вернемся на шаг назад. В тот момент, когда мы сделали свой изначальный выбор, мы разделили двери на две части: выбранная нами и две остальные. Очевидно, что вероятность того, что автомобиль прячется за «нашей» дверью, составляет ⅓ — соответственно, автомобиль находится за одной из двух оставшихся дверей с вероятностью ⅔. Когда ведущий показывает, что за одной из этих дверей — коза, получается, что эти ⅔ шанса приходятся на вторую дверь. А это сводит выбор игрока к двум дверям, за одной из которых (изначально выбранной) автомобиль находится с вероятностью ⅓, а за другой — с вероятностью ⅔. Выбор становится очевидным. Что, разумеется, не отменяет того факта, что с самого начала игрок мог выбрать дверь с автомобилем.

⚠ Задача трех узников

Парадокс трех узников схож с проблемой Монти Холла, хотя действие разворачивается в более драматических условиях. Трое заключенных (А, Б и В) приговорены к смертной казни и помещены в одиночные камеры. Губернатор случайным образом выбирает одного из них и дает ему помилование. Надзиратель знает, кто из троих помилован, но ему велено держать это в тайне. Узник A просит стражника сказать ему имя второго заключенного (кроме него самого), который точно будет казнен: «если Б помилован, скажи мне, что казнен будет В. Если помилован В, скажи мне, что казнен будет Б. Если они оба будут казнены, а помилован я, подбрось монету, и скажи любое из этих двух имен». Надзиратель говорит, что будет казнен узник Б. Стоит ли радоваться узнику А?

Казалось бы, да. Ведь до получения этой информации вероятность смерти узника А составляла ⅔, а теперь он знает, что один из двух других узников будет казнен — значит, вероятность его казни снизилась до ½. Но на самом деле узник А не узнал ничего нового: если помилован не он, ему назовут имя другого узника, а он и так знал, что кого-то из двоих оставшихся казнят. Если же ему повезло, и казнь отменили, он услышит случайное имя Б или В. Поэтому его шансы на спасение никак не изменились.

А теперь представим, что кто-то из оставшихся узников узнает о вопросе узника А и полученном ответе. Это изменит его представления о вероятности помилования.

Если разговор подслушал узник Б, он узнает, что его точно казнят. А если узник В, то вероятность его помилования будет составлять ⅔. Почему так произошло? Узник А не получил никакой информации, и его шансы на помилование по-прежнему ⅓. Узник Б точно не будет помилован, и его шансы равны нулю. Значит, вероятность того, что на свободу выйдет третий узник, равна ⅔.

⚠ Парадокс двух конвертов

Этот парадокс стал известен благодаря математику Мартину Гарднеру, и формулируется следующим образом: «Предположим, вам с другом предложили два конверта, в одном из которых лежит некая сумма денег X, а в другом — сумма вдвое больше. Вы независимо друг от друга вскрываете конверты, пересчитываете деньги, после чего можете обменяться ими. Конверты одинаковые, поэтому вероятность того, что вам достанется конверт с меньшей суммой, составляет ½. Допустим, вы открыли конверт и обнаружили в нем $10. Следовательно, в конверте вашего друга может быть равновероятно $5 или $20. Если вы решаетесь на обмен, то можно подсчитать математическое ожидание итоговой суммы — то есть, ее среднее значение. Она составляет 1/2х$5+1/2×20=$12,5. Таким образом, обмен вам выгоден. И, скорее всего, ваш друг будет рассуждать точно так же. Но очевидно, что обмен не может быть выгоден вам обоим. В чем же ошибка?»

Парадокс заключается в том, что пока вы не вскрыли свой конверт, вероятности ведут себя добропорядочно: у вас действительно 50-процентный шанс обнаружить в своем конверте сумму X и 50-процентный — сумму 2X. И здравый смысл подсказывает, что информация об имеющейся у вас сумме не может повлиять на содержимое второго конверта.

Тем не менее, как только вы вскрываете конверт, ситуация кардинально меняется (этот парадокс чем-то похож на историю с котом Шредингера, где само наличие наблюдателя влияет на положение дел). Дело в том, что для соблюдения условий парадокса вероятность нахождения во втором конверте большей или меньшей суммы, чем у вас, должна быть одинаковой. Но тогда равновероятно любое значение этой суммы от нуля до бесконечности. А если равновероятно бесконечное число возможностей, в сумме они дают бесконечность. А это невозможно.

Для наглядности можно представить, что вы обнаруживаете в своем конверте один цент. Очевидно, что во втором конверте не может быть суммы вдвое меньше.

Любопытно, что дискуссии относительно разрешения парадокса продолжаются и в настоящее время. При этом предпринимаются попытки как объяснить парадокс изнутри, так и выработать наилучшую стратегию поведения в подобной ситуации. В частности, профессор Томас Кавер предложил оригинальный подход к формированию стратегии — менять или не менять конверт, руководствуясь неким интуитивным ожиданием. Скажем, если вы открыли конверт и обнаружили в нем $10 — небольшую сумму по вашим прикидкам — стоит его обменять. А если в конверте, скажем, $1 000, что превосходит ваши самые смелые ожидания, то меняться не надо. Эта интуитивная стратегия в случае, если вам регулярно предлагают выбирать два конверта, дает возможность увеличить суммарный выигрыш больше, чем стратегия постоянной смены конвертов.

⚠ Парадокс мальчика и девочки

Этот парадокс был также предложен Мартином Гарднером и формулируется так: «У мистера Смита двое детей. Хотя бы один ребенок — мальчик. Какова вероятность того, что и второй — тоже мальчик?»

Казалось бы, задача проста. Однако если начать разбираться, обнаруживается любопытное обстоятельство: правильный ответ будет отличаться в зависимости от того, каким образом мы будем подсчитывать вероятность пола другого ребенка.
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС!
ЗАВТРА может быть ПОЗДНО!
Феникс Джонатанович ДонХуанЦзы вне форума   Ответить с цитированием
Старый 27.06.2015, 19:58   #10
Феникс Джонатанович ДонХуанЦзы
Senior Member
МегаБолтун
 
Аватар для Феникс Джонатанович ДонХуанЦзы
 
Регистрация: 02.06.2006
Адрес: Москва
Сообщений: 72,188
Записей в дневнике: 4
Вес репутации: 10
Феникс Джонатанович ДонХуанЦзы отключил(а) отображение уровня репутации
По умолчанию

10 интересных научных парадоксов


Парадокс - это событие, ситуация, действие или бездействие, которое может существовать или уже существует в реальности, но противоречит логическим объяснениям. поломайте голову над предоставленными под катом 10 любопытными парадоксами.

Парадокс Рассела.


Парадокс, который его открыватель, знаменитый британский философ и математик Бертран Рассел называл не иначе, как парадокс брадобрея, строго говоря, можно считать одной из форм парадокса лжеца.
Предположим, проходя мимо парикмахерской, вы увидели на ней рекламное объявление: «Вы бреетесь сами? Если нет, милости просим бриться! Брею всех, кто не бреется сам, и никого другого!». Закономерно задать вопрос: каким образом цирюльник управляется с собственной щетиной, если он бреет только тех, кто не бреется самостоятельно? Если же он сам не бреет собственную бороду, это противоречит его хвастливому утверждению: «Брею всех, кто не бреется сам».
Конечно, легче всего предположить, что недалёкий брадобрей просто не подумал о противоречии, содержащемся в его вывеске и забыть об этой проблеме, но попытаться понять её суть гораздо интереснее, правда для этого придётся ненадолго окунуться в математическую теорию множеств.
Парадокс Рассела выглядит так: «Пусть K — множество всех множеств, которые не содержат себя в качестве собственного элемента. Содержит ли K само себя в качестве собственного элемента? Если да, это опровергает утверждение, что множества в его составе „не содержат себя в качестве собственного элемента“, если же нет, возникает противоречие с тем, что К является множеством всех множеств, не содержащих себя как собственный элемент, а значит K должно содержать все возможные элементы, включая себя».
Проблема возникает из-за того, что Рассел в рассуждениях использовал понятие «множество всех множеств», которое само по себе довольно противоречиво, и руководствовался при этом законами классической логики, которые применимы далеко не во всех случаях (см. пункт шесть).
Открытие парадокса брадобрея спровоцировало жаркие споры в самых разных научных кругах, которые не утихают до сих пор. Для «спасения» теории множеств математики разработали несколько систем аксиом, но доказательств непротиворечивости этих систем нет и, по мнению некоторых учёных, быть не может.





Парадокс ценности.


Феномен, известный также как парадокс алмазов и воды или парадокс Смита (назван в честь Адама Смита — автора классических трудов по экономической теории, который, как считается, первым сформулировал этот парадокс), заключается в том, что хотя вода как ресурс гораздо полезнее кусков кристаллического углерода, называемых нами алмазами, цена последних на международном рынке несоизмеримо выше стоимости воды.
С точки зрения выживания вода действительно нужна человечеству гораздо больше алмазов, однако её запасы, конечно же, больше запасов алмазов, поэтому специалисты говорят, что ничего странного в разнице цен нет — ведь речь идёт о стоимости единицы каждого ресурса, а она во многом определяется таким фактором, как предельная полезность.
При непрерывном акте потребления какого-либо ресурса его предельная полезность и, как следствие, стоимость неизбежно падает — эту закономерность в XIX-м веке открыл прусский экономист Герман Генрих Госсен. Говоря простым языком, если человеку последовательно предложить три стакана воды, первый он выпьет, водой из второго умоется, а третий пойдёт на мытьё пола.
Большая часть человечества не испытывает острой нужды в воде — чтобы получить достаточное её количество, стоит только открыть водопроводный кран, а вот алмазы имеются далеко не у всех, поэтому они столь дороги.





Парадокс убитого дедушки.


Этот парадокс в 1943-м году предложил французский писатель-фантаст Рене Баржавель в своей книге «Неосторожный путешественник» (в оригинале «Le Voyageur Imprudent»).
Предположим, вам удалось изобрести машину времени, и вы отправились на ней в прошлое. Что произойдёт, если вы встретите там своего дедушку и убьёте его до того, как он встретился с вашей бабушкой? Вероятно, не всем понравится этот кровожадный сценарий, поэтому, скажем, вы предотвратите встречу другим путём, например, увезёте его на другой конец света, где он никогда не узнает о её существовании, парадокс от этого не исчезает.
Если встреча не состоится, ваша мать или отец не появится на свет, не сможет зачать вас, а вы соответственно не изобретёте машину времени и не попадёте в прошлое, поэтому дедушка сможет беспрепятственно жениться на бабушке, у них родится один из ваших родителей и так далее — парадокс налицо.
История с убитым в прошлом дедушкой часто приводится учёными как доказательство принципиальной невозможности путешествий во времени, однако некоторые специалисты говорят, что при определённых условиях парадокс вполне разрешим. Например, убив своего дедушку, путешественник во времени создаст альтернативную версию реальности, в которой он никогда не будет рождён.
Кроме того, многие высказывают предположения, что даже попав в прошлое, человек не сможет на него повлиять, так как это приведёт к изменению будущего, частью которого он является. Например, попытка убийства дедушки заведомо обречена на провал — ведь если внук существует, значит, его дед, так или иначе, пережил покушение.





Корабль Тесея.


Название парадоксу дал один из греческих мифов, описывающий подвиги легендарного Тесея, одного из афинских царей. Согласно легенде, афиняне несколько сотен лет хранили корабль, на котором Тесей вернулся в Афины с острова Крит. Конечно, судно постепенно ветшало, и плотники заменяли прогнившие доски на новые, в результате чего в нём не осталось ни кусочка старой древесины. Лучшие умы мира, в числе которых видные философы вроде Томаса Гоббса и Джона Локка веками размышляли над тем, можно ли считать, что именно на этом судне когда-то путешествовал Тесей.
Таким образом, суть парадокса в следующем: если заменить все части объекта на новые, может ли он быть тем же самым объектом? Кроме того, возникает вопрос — если из старых частей собрать точно такой же объект, какой из двух будет «тем самым»? Представители разных философских школ давали прямо противоположные ответы на эти вопросы, но некоторые противоречия в возможных решениях парадокса Тесея до сих пор существуют.
Кстати, если учесть, что клетки нашего организма практически полностью обновляются каждые семь лет, можно ли считать, что в зеркале мы видим того же человека, что и семь лет назад?





Парадокс Галилея.


Открытый Галилео Галилеем феномен демонстрирует противоречивые свойства бесконечных множеств. Краткая формулировка парадокса такова: натуральных чисел столько же, сколько их квадратов, то есть, количество элементов бесконечного множества 1, 2, 3, 4… равно количеству элементов бесконечного множества 1, 4, 9, 16…
На первый взгляд, никакого противоречия здесь нет, однако тот же Галилей в своей работе «Две науки» утверждает: некоторые числа являются точными квадратами (то есть из них можно извлечь целый квадратный корень), а другие нет, поэтому точных квадратов вместе с обычными числами должно быть больше, чем одних точных квадратов. Между тем, ранее в «Науках» встречается постулат о том, что квадратов натуральных чисел столько же, сколько самих натуральных чисел и эти два утверждения прямо противоположны друг другу.
Сам Галилей считал, что парадокс можно решить только применительно к конечным множествам, однако Георг Кантор, один из немецких математиков XIX-го века, разработал свою теорию множеств, согласно которой второй постулат Галилея (об одинаковом количестве элементов) верен и для бесконечных множеств. Для этого Кантор ввёл понятие мощности множества, которые при расчётах для обоих бесконечных множеств совпали.





Парадокс бережливости.


Самая известная формулировка любопытного экономического явления, описанного Уоддилом Кетчингсом и Уильямом Фостером выглядит следующим образом: «Чем больше мы откладываем на чёрный день, тем быстрее он наступит». Чтобы понять суть противоречия, заключённого в этом феномене, немного экономической теории.
Если во время экономического спада большая часть населения начинает экономить свои сбережения, снижается совокупный спрос на товары, что в свою очередь приводит к уменьшению заработка и как следствие — падению общего уровня экономии и сокращению сбережений. Попросту говоря, возникает своего рода замкнутый круг, когда потребители тратят меньше денег, но тем самым ухудшают своё благосостояние.
В некотором роде парадокс бережливости аналогичен проблеме из теории игр под названием дилемма заключённого: действия, которые выгодны каждому участнику ситуации по отдельности, вредны для них в целом.





Парадокс Пиноккио.


Является разновидностью философской проблемы, известной как парадокс лжеца. Этот парадокс прост по форме, но отнюдь не по содержанию. Его можно выразить в трёх словах: «Это утверждение — ложь», или даже в двух — «Я лгу». В варианте с Пиноккио проблема сформулирована так: «Мой нос сейчас растёт».
Думаю, вам понятно противоречие, содержащееся в этом утверждении, но на всякий случай, расставим все точки над ё: если фраза верна, значит, нос действительно растёт, но это означает что в данный момент детище папы Карло лжёт, чего не может быть, так как мы уже выяснили, что утверждение правдиво. Значит, нос расти не должен, но если это не соответствует действительности, высказывание всё-таки истинно, а это в свою очередь свидетельствует, что Пиноккио лжёт… И так далее — цепочку взаимоисключающих причин и следствий можно продолжать до бесконечности.
Парадокс лжеца показывает противоречие высказывания в разговорной речи формальной логике. С точки зрения классической логики проблема неразрешима, поэтому утверждение «Я лгу» вообще не считается логическим.





Парадокс дней рождения.


Суть проблемы заключается в следующем: если существует группа из 23-х или более человек, вероятность того, что у двух из них дни рождения (число и месяц) совпадут, превышает 50%. Для групп от 60-ти человек шанс составляет свыше 99%, но 100% достигает, только если в группе не менее 367-ми человек (с учётом високосных лет). Об этом свидетельствует принцип Дирихле, названный по имени его открывателя, немецкого математика Петера Густава Дирихле.
Строго говоря, с научной точки зрения это утверждение не противоречит логике и поэтому не является парадоксом, зато оно отлично демонстрирует разницу результатов интуитивного подхода и математических расчётов, ведь на первый взгляд для столь небольшой группы вероятность совпадения кажется сильно завышенной.
Если рассматривать каждого члена группы по отдельности, оценивая вероятность совпадения его дня рождения с чьим-либо другим, для каждого человека шанс составит примерно 0,27%, таким образом, общая вероятность для всех членов группы должна быть около 6,3% (23/365). Но это в корне неверно, ведь количество возможных вариантов выбора определённых пар из 23-х человек гораздо выше числа её членов и составляет (23*22)/2=253, исходя из формулы вычисления так называемого числа сочетаний из данного множества. Не будем углубляться в комбинаторику, можете на досуге проверить правильность этих расчётов.
Для 253-х вариантов пар шанс, что месяц и дата рождения участников одной из них окажутся одинаковыми, как вы наверняка догадались, значительно больше 6,3%.





Проблема курицы и яйца.


Наверняка, каждому из вас хотя бы раз в жизни задавали вопрос: «Что появилось раньше — курица или яйцо?». Искушённые в зоологии знают ответ: птицы появлялись на свет из яиц задолго до возникновения среди них отряда куриных. Стоит отметить, что в классической формулировке говорится как раз о птице и яйце, но и она допускает лёгкое решение: ведь, например, динозавры появились раньше птиц, и они тоже размножались, откладывая яйца.
Если учесть все эти тонкости, можно сформулировать проблему следующим образом: что появилось ранее — первое животное, откладывающее яйца, или собственно его яйцо, ведь откуда-то должен был вылупиться представитель нового вида.
Главная проблема заключается в установке причинно-следственной связи между явлениями нечёткого объёма. Для более полного понимания этого ознакомьтесь с принципами нечёткой логики — обобщения классической логики и теории множеств.
Говоря упрощённо, дело в том, что животные в ходе эволюции прошли через бесчисленное количество промежуточных этапов — это касается и способов выведения потомства. На различных эволюционных стадиях они откладывали разные объекты, которые нельзя однозначно определить как яйца, но имеющие с ними некоторое сходство.
Вероятно, объективного решения этой проблемы не существует, хотя, например, британский философ Герберт Спенсер предложил такой вариант: «Курица — лишь способ, которым одно яйцо производит другое яйцо».



Источник
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС!
ЗАВТРА может быть ПОЗДНО!
Феникс Джонатанович ДонХуанЦзы вне форума   Ответить с цитированием
Старый 15.04.2016, 23:47   #11
Феникс Джонатанович ДонХуанЦзы
Senior Member
МегаБолтун
 
Аватар для Феникс Джонатанович ДонХуанЦзы
 
Регистрация: 02.06.2006
Адрес: Москва
Сообщений: 72,188
Записей в дневнике: 4
Вес репутации: 10
Феникс Джонатанович ДонХуанЦзы отключил(а) отображение уровня репутации
По умолчанию

Вот ведь парадокс …


Как говорится, все гениальное просто, но не все простое — гениально. Давайте дружить вместе! Парадоксами, кои представляют из себя ситуацию (а также высказывание, утверждение, суждение или вывод), которая может существовать в реальности, но не имеет логического объяснения. Представляем Вашему вниманию подборку 8 наиболее занимательных парадоксов, в том числе, оставивших свой след в истории:

Парадокс всемогущества
Это довольно известный парадокс, который звучит следующим образом: «Попросите всемогущего человека создать камень, который он сам не сможет поднять». Если создать такой камень не получится, значит человек не всемогущ, а если получится — то человек утратит свое всемогущество.
Ответов тут может быть несколько. Возможно, абсолютного всемогущества попросту не существует. Также можно сказать, что всемогущее существо не ограниченно законами логики, поэтому может делать все, что захочет.
Парадокс черепахи

Этот парадокс был придуман древнегреческим философом Зеноном. Суть его такова: предположим, что Ахиллес бежит в 10 раз быстрее черепахи и находится за 1000 шагов от нее. Пока Ахиллес пробежит 1000 шагов, черепаха проползет еще 100 шагов. Когда Ахиллес пробежит 100 шагов, черепаха проползет еще 10 шагов, и так до бесконечности. В итоге Ахиллес так и не догонит черепаху. Естественно все мы понимаем, что в реальной жизни он бы ее наверняка и догнал, и перегнал.
Парадокс можно объяснить тем, что в реальности пространство и время нельзя делить бесконечно.
Парадокс убитого дедушки

Данный парадокс придумал французский писателеь-фантаст Рене Баржавель. Допустим, что человек создал машину времени, отправился в прошлое и убил там своего биологического деда в раннем детстве. В итоге один из родителей путешественника не был рожден. Соответственно и сам путешественник тоже не появился на свет. А это значит, что в итоге он не отправился в прошлое и не убил там своего деда и остался жив. Вариантов решения парадокса опять-таки несколько. Может быть, переместиться в прошлое попросту невозможно. А может быть, путешественник просто не сможет его изменить. Также есть мнение, что, отправившись в прошлое, путешественник создаст еще одну альтернативную реальность, в которой он никогда не будет рожден.
Корабль Тесея

Согласно древнегреческому мифу, жители Афин долгое время хранили корабль, на котором Тесей вернулся с острова Крит. Со временем корабль начал гнить, поэтому в нем постепенно начали менять доски. В определенный момент все доски корабля были заменены на новые. В итоге возник вполне закономерный вопрос: «Тот ли это еще корабль или уже совсем другой?» Помимо этого, появился еще один вопрос: «Если из старых досок собрать еще один такой-же корабль, то какой из них будет настоящим?»
В современной трактовке этот парадокс звучит так: «Если в исходном объекте заменить постепенно все составные части, останется ли он тем-же объектом?»
Ответ может быть таким: любой предмет может быть «тем-же» количественно и качественно. Это значит, что после смены досок корабль Тесея количественно будет тем-же кораблем, а вот качественно — уже другим.
Парадокс кучи

Предположим, у нас есть куча зерен. Если из нее убирать по одному зерну, то когда она перестанет быть кучей? будет ли она кучей, если в ней останется только одно зерно? Объясняется парадокс тем, что у термина «куча» нет точного определения.
Парадокс мэров

В одной стране вышел указ «Мэры всех городов должны проживать не в своем городе, а специальном городе для мэров». Возникает вопрос: «Где должен жить мэр города мэров?»
Парадокс неожиданной казни

Одному заключенному сказали: «Вас казнят в полдень следующей среды. Это будет неожиданностью для вас.» Заключенный приходит к выводу, что раз он знает точное время казни, то казнь никак не сможет стать для него неожиданной, а значит его не смогут казнить. В полдень следующей среды за ним действительно приходит палач и его казнят. И казнь действительно ставится неожиданностью для заключенного.
Парадокс Эватла

Это древняя логическая задача, суть которой такова: «Некий учитель Протагор взял к себе в ученики Эватла и начал обучать его судебному делу. Эватл пообещал оплатить все обучение как только выиграет свое первое дело. Однако после обучения Эватл не спешил работать. Тогда Протагор подал на него в суд. В итоге судья так и не смог вынести какое-либо решение, ведь если Эватл выиграет это дело, то он обязан будет отдать деньги Протагору. Таким образом он на самом деле проиграет, а значит, ему не нужно будет оплачивать свою учебу Протагору. И так — до бесконечности…
Источник: v-shoke.com
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС!
ЗАВТРА может быть ПОЗДНО!
Феникс Джонатанович ДонХуанЦзы вне форума   Ответить с цитированием
Старый 15.06.2016, 10:50   #12
Феникс Джонатанович ДонХуанЦзы
Senior Member
МегаБолтун
 
Аватар для Феникс Джонатанович ДонХуанЦзы
 
Регистрация: 02.06.2006
Адрес: Москва
Сообщений: 72,188
Записей в дневнике: 4
Вес репутации: 10
Феникс Джонатанович ДонХуанЦзы отключил(а) отображение уровня репутации
По умолчанию

10 удивительных парадоксов, которые поставят вас в тупик

Парадоксы можно найти везде, от экологии до геометрии и от логики до химии. Даже компьютер, на котором вы читаете статью, полон парадоксов. Перед вами — десять объяснений довольно увлекательных парадоксов. Некоторые из них настолько странные, что мы просто не можем полностью понять, в чём же суть.

1. Парадокс Банаха-Тарского
Представьте себе, что вы держите в руках шар. А теперь представьте, что вы начали рвать этот шар на куски, причём куски могут быть любой формы, какая вам нравится. После сложите кусочки вместе таким образом, чтобы у вас получилось два шара вместо одного. Каков будет размер этих шаров по сравнению с шаром-оригиналом?

Согласно теории множеств, два получившихся шара будут такого же размера и формы, как шар-оригинал. Кроме того, если учесть, что шары при этом имеют разный объём, то любой из шаров может быть преобразован в соответствии с другим. Это позволяет сделать вывод, что горошину можно разделить на шары размером с Солнце.

Хитрость парадокса заключается в том, что вы можете разорвать шары на куски любой формы. На практике сделать это невозможно — структура материала и в конечном итоге размер атомов накладывают некоторые ограничения.

Для того чтобы было действительно возможно разорвать шар так, как вам нравится, он должен содержать бесконечное число доступных нульмерных точек. Тогда шар из таких точек будет бесконечно плотным, и когда вы разорвёте его, формы кусков могут получиться настолько сложными, что не будут иметь определенного объёма. И вы можете собрать эти куски, каждый из которых содержит бесконечное число точек, в новый шар любого размера. Новый шар будет по-прежнему состоять из бесконечных точек, и оба шара будут одинаково бесконечно плотными.
Если вы попробуете воплотить идею на практике, то ничего не получится. Зато всё замечательно получается при работе с математическими сферами — безгранично делимыми числовыми множествами в трехмерном пространстве. Решённый парадокс называется теоремой Банаха-Тарского и играет огромную роль в математической теории множеств.

2. Парадокс Пето
Очевидно, что киты гораздо крупнее нас, это означает, что у них в телах гораздо больше клеток. А каждая клетка в организме теоретически может стать злокачественной. Следовательно, у китов гораздо больше шансов заболеть раком, чем у людей, так?

Не так. Парадокс Пето, названный в честь оксфордского профессора Ричарда Пето, утверждает, что корреляции между размером животного и раком не существует. У людей и китов шанс заболеть раком примерно одинаков, а вот некоторые породы крошечных мышей имеют гораздо больше шансов.

Некоторые биологи полагают, что отсутствие корреляции в парадоксе Пето можно объяснить тем, что более крупные животные лучше сопротивляются опухоли: механизм работает таким образом, чтобы предотвратить мутацию клеток в процессе деления.

3. Проблема настоящего времени
Чтобы что-то могло физически существовать, оно должно присутствовать в нашем мире в течение какого-то времени. Не может быть объекта без длины, ширины и высоты, а также не может быть объекта без «продолжительности» — «мгновенный» объект, то есть тот, который не существует хотя бы какого-то количества времени, не существует вообще.

Согласно универсальному нигилизму, прошлое и будущее не занимают времени в настоящем. Кроме того, невозможно количественно определить длительность, которую мы называем «настоящим временем»: любое количество времени, которое вы назовёте «настоящим временем», можно разделить на части — прошлое, настоящее и будущее.

Если настоящее длится, допустим, секунду, то эту секунду можно разделить на три части: первая часть будет прошлым, вторая — настоящим, третья — будущим. Треть секунды, которую мы теперь называем настоящим, можно тоже разделить на три части. Наверняка идею вы уже поняли — так можно продолжать бесконечно.

Таким образом, настоящего на самом деле не существует, потому что оно не продолжается во времени. Универсальный нигилизм использует этот аргумент, чтобы доказать, что не существует вообще ничего.

4. Парадокс Моравека
При решении проблем, требующих вдумчивого рассуждения, у людей случаются затруднения. С другой стороны, основные моторные и сенсорные функции вроде ходьбы не вызывают никаких затруднений вообще.

Но если говорить о компьютерах, всё наоборот: компьютерам очень легко решать сложнейшие логические задачи вроде разработки шахматной стратегии, но куда сложнее запрограммировать компьютер так, чтобы он смог ходить или воспроизводить человеческую речь. Это различие между естественным и искусственным интеллектом известно как парадокс Моравека.
Ханс Моравек, научный сотрудник факультета робототехники Университета Карнеги-Меллона, объясняет это наблюдение через идею реверсного инжиниринга нашего собственного мозга. Реверсный инжиниринг труднее всего провести при задачах, которые люди выполняют бессознательно, например, двигательных функциях.

Поскольку абстрактное мышление стало частью человеческого поведения меньше 100 000 лет назад, наша способность решать абстрактные задачи является сознательной. Таким образом, для нас намного легче создать технологию, которая эмулирует такое поведение. С другой стороны, такие действия, как ходьба или разговор, мы не осмысливаем, так что заставить искусственный интеллект делать то же самое нам сложнее.

5. Закон Бенфорда
Каков шанс, что случайное число начнётся с цифры «1»? Или с цифры «3»? Или с «7»? Если вы немного знакомы с теорией вероятности, то можете предположить, что вероятность — один к девяти, или около 11%.

Если же вы посмотрите на реальные цифры, то заметите, что «9» встречается гораздо реже, чем в 11% случаев. Также куда меньше цифр, чем ожидалось, начинается с «8», зато колоссальные 30% чисел начинаются с цифры «1». Эта парадоксальная картина проявляется во всевозможных реальных случаях, от количества населения до цен на акции и длины рек.

Физик Фрэнк Бенфорд впервые отметил это явление в 1938-м году. Он обнаружил, что частота появления цифры в качестве первой падает по мере того, как цифра увеличивается от одного до девяти. То есть «1» появляется в качестве первой цифры примерно в 30,1% случаев, «2» появляется около 17,6% случаев, «3» — примерно в 12,5%, и так далее до «9», выступающей в качестве первой цифры всего лишь в 4,6% случаев.

Чтобы понять это, представьте себе, что вы последовательно нумеруете лотерейные билеты. Когда вы пронумеровали билеты от одного до девяти, шанс любой цифры стать первой составляет 11,1%. Когда вы добавляете билет № 10, шанс случайного числа начаться с «1» возрастает до 18,2%. Вы добавляете билеты с № 11 по № 19, и шанс того, что номер билета начнётся с «1», продолжает расти, достигая максимума в 58%. Теперь вы добавляете билет № 20 и продолжаете нумеровать билеты. Шанс того, что число начнётся с «2», растёт, а вероятность того, что оно начнётся с «1», медленно падает.

Закон Бенфорда не распространяется на все случаи распределения чисел. Например, наборы чисел, диапазон которых ограничен (человеческий рост или вес), под закон не попадают. Он также не работает с множествами, которые имеют только один или два порядка.
Тем не менее, закон распространяется на многие типы данных. В результате власти могут использовать закон для выявления фактов мошенничества: когда предоставленная информация не следует закону Бенфорда, власти могут сделать вывод, что кто-то сфабриковал данные.

6. C-парадокс
Гены содержат всю информацию, необходимую для создания и выживания организма. Само собой разумеется, что сложные организмы должны иметь самые сложные геномы, но это не соответствует истине.

Одноклеточные амёбы имеют геномы в 100 раз больше, чем у человека, на самом деле, у них едва ли не самые большие из известных геномов. А у очень похожих между собой видов геном может кардинально различаться. Эта странность известна как С-парадокс.
Интересный вывод из С-парадокса — геном может быть больше, чем это необходимо. Если все геномы в человеческой ДНК будут использоваться, то количество мутаций на поколение будет невероятно высоким.

Геномы многих сложных животных вроде людей и приматов включают в себя ДНК, которая ничего не кодирует. Это огромное количество неиспользованных ДНК, значительно варьирующееся от существа к существу, кажется, ни от чего не зависит, что и создаёт C-парадокс.

7. Бессмертный муравей на верёвке
Представьте себе муравья, ползущего по резиновой верёвке длиной один метр со скоростью один сантиметр в секунду. Также представьте, что верёвка каждую секунду растягивается на один километр. Дойдёт ли муравей когда-нибудь до конца?

Логичным кажется то, что нормальный муравей на такое не способен, потому что скорость его движения намного ниже скорости, с которой растягивается верёвка. Тем не менее, в конечном итоге муравей доберётся до противоположного конца.

Когда муравей ещё даже не начал движение, перед ним лежит 100% верёвки. Через секунду верёвка стала значительно больше, но муравей тоже прошёл некоторое расстояние, и если считать в процентах, то расстояние, которое он должен пройти, уменьшилось — оно уже меньше 100%, пусть и ненамного.

Хотя верёвка постоянно растягивается, маленькое расстояние, пройденное муравьём, тоже становится больше. И, хотя в целом верёвка удлиняется с постоянной скоростью, путь муравья каждую секунду становится немного меньше. Муравей тоже всё время продолжает двигаться вперёд с постоянной скоростью. Таким образом, с каждой секундой расстояние, которое он уже прошёл, увеличивается, а то, которое он должен пройти — уменьшается. В процентах, само собой.

Существует одно условие, чтобы задача могла иметь решение: муравей должен быть бессмертным. Итак, муравей дойдёт до конца через 2,8?1043.429 секунд, что несколько дольше, чем существует Вселенная.

8. Парадокс экологического баланса
Модель «хищник-жертва» — это уравнение, описывающее реальную экологическую обстановку. Например, модель может определить, насколько изменится численность лис и кроликов в лесу. Допустим, что травы, которой питаются кролики, в лесу становится всё больше. Можно предположить, что для кроликов такой исход благоприятен, потому что при обилии травы они будут хорошо размножаться и увеличивать численность.

Парадокс экологического баланса утверждает, что это не так: сначала численность кроликов действительно возрастёт, но рост популяции кроликов в закрытой среде (лесу) приведёт к росту популяции лисиц. Затем численность хищников увеличится настолько, что они уничтожат сначала всю добычу, а потом вымрут сами.

На практике этот парадокс не действует на большинство видов животных — хотя бы потому, что они не живут в закрытой среде, поэтому популяции животных стабильны. Кроме того, животные способны эволюционировать: например, в новых условиях у добычи появятся новые защитные механизмы.

9. Парадокс тритона
Соберите группу друзей и посмотрите все вместе это видео. Когда закончите, пусть каждый выскажет своё мнение, увеличивается звук или уменьшается во время всех четырёх тонов. Вы удивитесь, насколько разными будут ответы.

Чтобы понять этот парадокс, вам нужно знать кое-что о музыкальных нотах. У каждой ноты есть определённая высота, от которой зависит, высокий или низкий звук мы слышим. Нота следующей, более высокой октавы, звучит в два раза выше, чем нота предыдущей октавы. А каждую октаву можно разделить на два равных тритонных интервала.

На видео тритон разделяет каждую пару звуков. В каждой паре один звук представляет собой смесь одинаковых нот из разных октав — например, сочетание двух нот до, где одна звучит выше другой. Когда звук в тритоне переходит с одной ноты на другую (например, соль-диез между двумя до), можно совершенно обоснованно интерпретировать ноту как более высокую или более низкую, чем предыдущая.

Другое парадоксальное свойство тритонов — это ощущение, что звук постоянно становится ниже, хотя высота звука не меняется. На нашем видео вы можете наблюдать эффект в течение целых десяти минут.

10. Эффект Мпембы
Перед вами два стакана воды, совершенно одинаковые во всём, кроме одного: температура воды в левом стакане выше, чем в правом. Поместите оба стакана в морозилку. В каком стакане вода замёрзнет быстрее? Можно решить, что в правом, в котором вода изначально была холоднее, однако горячая вода замёрзнет быстрее, чем вода комнатной температуры.

Этот странный эффект назван в честь студента из Танзании, который наблюдал его в 1986-м году, когда замораживал молоко, чтобы сделать мороженое. Некоторые из величайших мыслителей — Аристотель, Фрэнсис Бэкон и Рене Декарт — и ранее отмечали это явление, но не были в состоянии объяснить его. Аристотель, например, выдвигал гипотезу, что какое-либо качество усиливается в среде, противоположной этому качеству.

Эффект Мпембы возможен благодаря нескольким факторам. Воды в стакане с горячей водой может быть меньше, так как часть её испарится, и в результате замёрзнуть должно меньшее количество воды. Также горячая вода содержит меньше газа, а значит, в такой воде легче возникнут конвекционные потоки, следовательно, замерзать ей будет проще.

Другая теория строится на том, что ослабевают химические связи, удерживающие молекулы воды вместе. Молекула воды состоит из двух атомов водорода, связанных с одним атомом кислорода. Когда вода нагревается, молекулы немного отодвигаются друг от друга, связь между ними ослабевает, и молекулы теряют немного энергии — это позволяет горячей воде остывать быстрее, чем холодной.
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС!
ЗАВТРА может быть ПОЗДНО!
Феникс Джонатанович ДонХуанЦзы вне форума   Ответить с цитированием
Старый 27.08.2016, 22:14   #13
Феникс Джонатанович ДонХуанЦзы
Senior Member
МегаБолтун
 
Аватар для Феникс Джонатанович ДонХуанЦзы
 
Регистрация: 02.06.2006
Адрес: Москва
Сообщений: 72,188
Записей в дневнике: 4
Вес репутации: 10
Феникс Джонатанович ДонХуанЦзы отключил(а) отображение уровня репутации
По умолчанию

12 самых знаменитых парадоксов

Парадоксы существовали со времен древних греков. При помощи логики можно быстро найти фатальный недостаток в парадоксе, который и показывает, почему, казалось бы, невозможное, возможно, или что весь парадокс просто построен на недостатках мышления.

А вы сможете понять, в чем недостаток каждого из ниже перечисленных парадоксов?

12. Парадокс Ольберса
В астрофизике и физической космологии парадокс Ольберса – это аргумент, говорящий о том, что темнота ночного неба конфликтует с предположением о бесконечной и вечной статической Вселенной. Это одно из свидетельств нестатической Вселенной, такое, как текущая модель Большого взрыва. Об этом аргументе часто говорят как о “темном парадоксе ночного неба”, который гласит, что под любым углом зрения с Земли линия видимости закончится, достигнув звезды.
Чтобы понять это, мы сравним парадокс с нахождением человека в лесу среди белых деревьев. Если с любой точки зрения линия видимости заканчивается на верхушках деревьев, человек разве продолжает видеть только белый цвет? Это противоречит темноте ночного неба и заставляет многих людей задаться вопросом, почему мы не видим только свет от звезд в ночном небе.

11. Парадокс всемогущества
Парадокс состоит в том, что если существо может выполнять какие-либо действия, то оно может ограничить свою способность выполнять их, следовательно, оно не может выполнять все действия, но, с другой стороны, если оно не может ограничивать свои действия, то это что-то, что оно не может сделать.
Это, судя по всему, подразумевает, что способность всемогущего существа ограничивать себя обязательно означает, что оно действительно ограничивает себя. Этот парадокс часто формулируется в терминологии авраамических религий, хотя это и не является обязательным требованием.
Одна из версий парадокса всемогущества заключается в так называемом парадоксе о камне: может ли всемогущее существо создать настолько тяжелый камень, что даже оно будет не в состоянии поднять его? Если это так, то существо перестает быть всемогущим, а если нет, то существо не было всемогущим с самого начала.
Ответ на парадокс заключается в следующем: наличие слабости, такой, как невозможность поднять тяжелый камень, не попадает под категорию всемогущества, хотя определение всемогущества подразумевает отсутствие слабостей.

10. Парадокс Сорита
Парадокс состоит в следующем: рассмотрим кучу песка, из которого постепенно удаляются песчинки. Можно построить рассуждение, используя утверждения:
— 1000000 песчинок – это куча песка;
— куча песка минус одна песчинка – это по-прежнему куча песка.
Если без остановки продолжать второе действие, то, в конечном счете, это приведет к тому, что куча будет состоять из одной песчинки. На первый взгляд, есть несколько способов избежать этого заключения. Можно возразить первой предпосылке, сказав, что миллион песчинок – это не куча. Но вместо 1000000 может быть сколь угодно другое большое число, а второе утверждение будет верным при любом числе с любым количеством нулей.
Таким образом, ответ должен прямо отрицать существование таких вещей, как куча. Кроме того, кто-то может возразить второй предпосылке, заявив, что она верна не для всех “коллекций зерна” и что удаление одного зерна или песчинки все еще оставляет кучу кучей. Или же может заявить о том, что куча песка может состоять из одной песчинки.

9. Парадокс интересных чисел
Утверждение: нет такого понятия, как неинтересное натуральное число.
Доказательство от противного: предположим, что у вас есть непустое множество натуральных чисел, которые неинтересны. Благодаря свойствам натуральных чисел, в перечне неинтересных чисел обязательно будет наименьшее число.
Будучи наименьшим числом множества его можно было бы определить как интересное в этом наборе неинтересных чисел. Но так как изначально все числа множества были определены как неинтересные, то мы пришли к противоречию, так как наименьшее число не может быть одновременно и интересным, и неинтересным. Поэтому множества неинтересных чисел должны быть пустыми, доказывая, что не существует такого понятия, как неинтересные числа.

8. Парадокс летящей стрелы
Данный парадокс говорит о том, что для того, чтобы произошло движение, объект должен изменить позицию, которую он занимает. В пример приводится движение стрелы. В любой момент времени летящая стрела остается неподвижной, потому как она покоится, а так как она покоится в любой момент времени, значит, она неподвижна всегда.
То есть данный парадокс, выдвинутый Зеноном еще в 6 веке, говорит об отсутствии движения как таковом, основываясь на том, что двигающееся тело должно дойти до половины, прежде чем завершить движение. Но так как оно в каждый момент времени неподвижно, оно не может дойти до половины. Этот парадокс также известен как парадокс Флетчера.
Стоит отметить, что если предыдущие парадоксы говорили о пространстве, то следующий парадокс – о делении времени не на сегменты, а на точки.

7. Парадокс Ахиллеса и черепахи
В данном парадоксе Ахиллес бежит за черепахой, предварительно дав ей фору в 30 метров. Если предположить, что каждый из бегунов начал бежать с определенной постоянной скоростью (один очень быстро, второй очень медленно), то через некоторое время Ахиллес, пробежав 30 метров, достигнет той точки, от которой двинулась черепаха. За это время черепаха “пробежит” гораздо меньше, скажем, 1 метр.
Затем Ахиллесу потребуется еще какое-то время, чтобы преодолеть это расстояние, за которое черепаха продвинется еще дальше. Достигнув третьей точки, в которой побывала черепаха, Ахиллес продвинется дальше, но все равно не нагонит ее. Таким образом, всякий раз, когда Ахиллес будет достигать черепаху, она все равно будет впереди.
Таким образом, поскольку существует бесконечное количество точек, которых Ахиллес должен достигнуть, и в которых черепаха уже побывала, он никогда не сможет догнать черепаху. Конечно, логика говорит нам о том, что Ахиллес может догнать черепаху, потому это и является парадоксом.
Проблема этого парадокса заключается в том, что в физической реальности невозможно бесконечно пересекать поперечно точки – как вы можете попасть из одной точки бесконечности в другую, не пересекая при этом бесконечность точек? Вы не можете, то есть, это невозможно.
Но в математике это не так. Этот парадокс показывает нам, как математика может что-то доказать, но в действительности это не работает. Таким образом, проблема данного парадокса в том, что происходит применение математических правил для нематематических ситуаций, что и делает его неработающим.

6. Парадокс Буриданова осла
Это образное описание человеческой нерешительности. Это относится к парадоксальной ситуации, когда осел, находясь между двумя абсолютно одинаковыми по размеру и качеству стогами сена, будет голодать до смерти, поскольку так и не сможет принять рациональное решение и начать есть.
Парадокс назван в честь французского философа 14 века Жана Буридана (Jean Buridan), однако, он не был автором парадокса. Он был известен еще со времен Аристотеля, который в одном из своих трудов рассказывает о человеке, который был голоден и хотел пить, но так как оба чувства были одинаково сильны, а человек находился между едой и питьем, он так и не смог сделать выбора.
Буридан, в свою очередь, никогда не говорил о данной проблеме, но затрагивал вопросы о моральном детерминизме, который подразумевал, что человек, столкнувшись с проблемой выбора, безусловно, должен выбирать в сторону большего добра, но Буридан допустил возможность замедления выбора с целью оценки всех возможных преимуществ. Позднее другие авторы отнеслись с сатирой к этой точке зрения, говоря об осле, который столкнувшись с двумя одинаковыми стогами сена, будет голодать, принимая решение.

5. Парадокс неожиданной казни
Судья говорит осужденному, что он будет повешен в полдень в один из рабочих дней на следующей неделе, но день казни будет для заключенного сюрпризом. Он не будет знать точную дату, пока палач в полдень не придет к нему в камеру. После, немного порассуждав, преступник приходит к выводу, что он сможет избежать казни.
Его рассуждения можно разделить на несколько частей. Начинает он с того, что его не могут повесить в пятницу, так как если его не повесят в четверг, то пятница уже не будет неожиданностью. Таким образом, пятницу он исключил. Но тогда, так как пятница уже вычеркнута из списка, он пришел к выводу, что он не может быть повешенным и в четверг, потому что если его не повесят в среду, то четверг тоже не будет неожиданностью.
Рассуждая аналогичным образом, он последовательно исключил все оставшиеся дни недели. Радостным он ложится спать с уверенностью, что казни не произойдет вовсе. На следующей неделе в полдень среды к нему в камеру пришел палач, поэтому, несмотря на все его рассуждения, он был крайне удивлен. Все, что сказал судья, сбылось.

4. Парадокс парикмахера
Предположим, что существует город с одним мужским парикмахером, и что каждый мужчина в городе бреется налысо: некоторые самостоятельно, некоторые с помощью парикмахера. Кажется разумным предположить, что процесс подчиняется следующему правилу: парикмахер бреет всех мужчин и только тех, кто не бреется сам.
Согласно этому сценарию, мы можем задать следующий вопрос: парикмахер бреет себя сам? Однако, спрашивая это, мы понимаем, что ответить на него правильно невозможно:
— если парикмахер не бреется сам, он должен соблюдать правила и брить себя сам;
— если он бреет себя сам, то по тем же правилам он не должен брить себя сам.

3. Парадокс Эпименида
Этот парадокс вытекает из заявления, в котором Эпименид, противореча общему убеждению Крита, предположил, что Зевс был бессмертным, как в следующем стихотворении:

Они создали гробницу для тебя, высший святой
Критяне, вечные лжецы, злые звери, рабы живота!
Но ты не умер: ты жив и будешь жив всегда,
Ибо ты живешь в нас, а мы существуем.

Тем не менее, он не осознавал, что, называя всех критян лжецами, он невольно и самого себя называл обманщиком, хотя он и “подразумевал”, что все критяне, кроме него. Таким образом, если верить его утверждению, и все критяне лжецы на самом деле, он тоже лжец, а если он лжец, то все критяне говорят правду. Итак, если все критяне говорят правду, то и он в том числе, а это означает, исходя из его стиха, что все критяне лжецы. Таким образом, цепочка рассуждений возвращается в начало.

2. Парадокс Эватла
Это очень старая задача в логике, вытекающая из Древней Греции. Говорят, что знаменитый софист Протагор взял к себе на учение Эватла, при этом, он четко понимал, что ученик сможет заплатить учителю только после того, как он выиграет свое первое дело в суде.
Некоторые эксперты утверждают, что Протагор потребовал деньги за обучение сразу же после того, как Эватл закончил свою учебу, другие говорят, что Протагор подождал некоторое время, пока не стало очевидно, что ученик не прикладывает никаких усилий для того, чтобы найти клиентов, третьи же уверены в том, что Эватл очень старался, но клиентов так и не нашел. В любом случае, Протагор решил подать в суд на Эватла, чтобы тот вернул долг.
Протагор утверждал, что если он выиграет дело, то ему будут выплачены его деньги. Если бы дело выиграл Эватл, то Протагор по-прежнему должен был получить свои деньги в соответствии с первоначальным договором, потому что это было бы первое выигрышное дело Эватла.
Эватл, однако, стоял на том, что если он выиграет, то по решению суда ему не придется платить Протагору. Если, с другой стороны, Протагор выиграет, то Эватл проигрывает свое первое дело, поэтому и не должен ничего платить. Так кто же из мужчин прав?

1. Парадокс непреодолимой силы
Парадокс непреодолимой силы представляет собой классический парадокс, сформулированный как “что происходит, когда непреодолимая сила встречает неподвижный объект?” Парадокс следует воспринимать как логическое упражнение, а не как постулирование возможной реальности.
Согласно современным научным пониманиям, никакая сила не является полностью неотразимой, и не существует и быть не может полностью недвижимых объектов, так как даже незначительная сила будет вызывать небольшое ускорение объекта любой массы. Неподвижный предмет должен иметь бесконечную инерцию, а, следовательно, и бесконечную массу. Такой объект будет сжиматься под действием собственной силы тяжести. Непреодолимой силе потребуется бесконечная энергия, которая не существует в конечной Вселенной.
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС!
ЗАВТРА может быть ПОЗДНО!
Феникс Джонатанович ДонХуанЦзы вне форума   Ответить с цитированием
Старый 13.10.2018, 14:27   #14
Rombus
Senior Member
МегаБолтун
 
Регистрация: 03.03.2014
Сообщений: 1,328
Записей в дневнике: 2
Вес репутации: 12
Rombus is on a distinguished road
По умолчанию

Ветеринарам известен парадокс: котов, упавших с шести и более этажей, приносят к ветеринарам в намного лучшем состоянии, чем упавших с меньших высот[5]. Одно из объяснений этому — кот через некоторое время достигает предельной скорости (когда рост скорости остановится из-за сопротивления воздуха) и при этом успевает принять наилучшую позицию для приземления, что помогает ему выжить. Благодаря принятой позиции кот уподобляется парашюту и даже начинает снижать свою скорость после первых шести этажей.
Другое объяснение — ошибка выжившего: чем больше высота, тем вероятнее случай, что кота сочтут погибшим и не понесут в больницу.



Мне стало любопытно , и вот что я нашел по этому поводу в сети.

Систематическая ошибка выжившего





Примеры

Пробоины на вернувшихся самолётах показывают места, в которых они могут получить повреждения и выжить. Получившие повреждения в других местах не смогли вернуться на базу.

Во Вторую мировую войну венгерскому математику Абрахаму Вальду, работавшему в нью-йоркской лаборатории SRG, поручили найти решение важной задачи. Не все американские бомбардировщики возвращались на базу. А на тех, что возвращались, оставалось множество пробоин от зениток и истребителей, но распределены они были неравномерно: больше всего на фюзеляже и прочих частях, меньше в топливной системе и намного меньше — в двигателе. Значило ли это, что в пробитых местах нужно больше брони? Вальд ответил: нет, исследование как раз показывает, что самолёт, получивший пробоины в данных местах, ещё может вернуться на базу. Самолёт, которому попали в двигатель или бензобак, выходит из строя и не возвращается. Поскольку попадания от вражеского огня на самом деле (в первом приближении) распределены равномерно, укреплять надо те места, которые у вернувшихся в массе наиболее «чистые»

Системати́ческая оши́бка вы́жившего (англ. survivorship bias) — разновидность систематической ошибки отбора, когда по одной группе («выжившим») есть много данных, а по другой («погибшим») — практически нет, в результате чего исследователи пытаются искать общие черты среди «выживших» и упускают из вида, что не менее важная информация скрывается среди «погибших».
Rombus вне форума   Ответить с цитированием
Старый 21.01.2020, 18:10   #15
Феникс Джонатанович ДонХуанЦзы
Senior Member
МегаБолтун
 
Аватар для Феникс Джонатанович ДонХуанЦзы
 
Регистрация: 02.06.2006
Адрес: Москва
Сообщений: 72,188
Записей в дневнике: 4
Вес репутации: 10
Феникс Джонатанович ДонХуанЦзы отключил(а) отображение уровня репутации
По умолчанию

Парадокс всемогущества

Это довольно известный парадокс, который звучит следующим образом: «Попросите всемогущего человека создать камень, который он сам не сможет поднять.» Если создать такой камень не получится, значит человек не всемогущ, а если получится — то человек утратит своё всемогущество.
Ответов тут может быть несколько. Возможно, абсолютного всемогущества попросту не существует. Также можно сказать, что всемогущее существо не ограниченно законами логики, поэтому может делать всё, что захочет.
Парадокс черепахи

Этот парадокс был придуман древнегреческим философом Зеноном. Суть его такова: предположим, что Ахиллес бежит в 10 раз быстрее черепахи и находится за 1000 шагов от неё. Пока Ахиллес пробежит 1000 шагов, черепаха проползёт ещё 100 шагов. Когда Ахиллес пробежит 100 шагов, черепаха проползёт ещё 10 шагов, и так до бесконечности. В итоге Ахиллес так и не догонит черепаху. Естественно все мы понимаем, что в реальной жизни он бы её наверняка и догнал, и перегнал.
Парадокс можно объяснить тем, что в реальности пространство и время нельзя делить бесконечно.
Парадокс убитого дедушки

Данный парадокс придумал французский писатель-фантаст Рене Баржавель. Допустим, что человек создал машину времени, отправился в прошлое и убил там своего биологического деда в раннем детстве. В итоге один из родителей путешественника не был рождён. Соответственно и сам путешественник тоже не появился на свет. А это значит, что в итоге он не отправился в прошлое и не убил там своего деда и остался жив. Вариантов решения парадокса опять-таки несколько. Может быть, переместиться в прошлое попросту невозможно. А может быть, путешественник просто не сможет его изменить. Также есть мнение, что, отправившись в прошлое, путешественник создаст ещё одну альтернативную реальность, в которой он никогда не будет рождён.
Корабль Тесея

Согласно древнегреческому мифу, жители Афин долгое время хранили корабль, на котором Тесей вернулся с острова Крит. Со временем корабль начал гнить, поэтому в нём постепенно начали менять доски. В определённый момент все доски корабля были заменены на новые. В итоге возник вполне закономерный вопрос: «Тот ли это ещё корабль или уже совсем другой?» Помимо этого, появился ещё один вопрос: «Что, если из старых досок собрать ещё один такой-же корабль, то какой из них будет настоящим?»
В современной трактовке этот парадокс звучит так: «Если в исходном объекте заменить постепенно все составные части, останется ли он тем-же объектом?»
Ответ может быть таким: любой предмет может быть «тем-же» количественно и качественно. Это значит, что после смены досок корабль Тесея количественно будет тем-же кораблём, а вот качественно — уже другим.
Парадокс кучи

Предположим, у нас есть куча зёрен. Если из неё убирать по одному зерну, то когда она перестанет быть кучей? будет ли она кучей, если в ней останется только одно зерно? Объясняется парадокс тем, что у термина «куча» нет точного определения.
Парадокс Абилина

Парадокс звучит следующим образом: «В один жаркий вечер некая семья играла на крыльце дома в домино, пока тесть не предложил поехать отдохнуть в Абилин. Поездка обещала быть долгой и утомительной. Тем не менее жена сразу-же согласилась ехать, сказав «Неплохая идея!» Муж никуда ехать не хотел, однако решил подстроиться под остальных и сказал, что ему эта идея тоже кажется весьма неплохой. Наконец тёща тоже согласилась на поездку. Дорога до Абилина оказалась весьма утомительной и жаркой, так что отдых не удался. Через несколько часов семья приехала обратно домой. Тёща сказала, что поездка ей не понравилась и поехала она только ради остальных. Муж сказал, что он тоже рад был бы не ехать, но согласился на поездку, чтобы не портить остальным настроение. Жена в свою очередь сказала, что и ей никуда не хотелось ехать, она просто хотела подстроиться под всех остальных. Наконец сам тесть сказал, что предложил поездку только потому, что окружающая обстановка показалась ему скучноватой. Таким образом, никто из них не хотел ехать в Абилин и согласился только ради остальных.»
Данный парадокс является типичным примером группового мышления.
Парадокс Греллинга

Разделим все прилагательные на две группы: автологические и гетерологические. Автологические прилагательные — это те, которые характеризуют сами себя. Например, прилагательное «многосложное» является многосложным, а прилагательное «русское» является русским.
Гетерологические прилагательные — это те, которые не характеризуют сами себя. Например, прилагательное «новое» не является новым, а прилагательное «немецкое» не является немецким.
Парадокс возникает в том случае, когда необходимо определить прилагательное «гетерологическое» к одной из двух групп. Если оно характеризует само себя, то является автологическим, а не гетерологическим.
Парадокс мэров

В одной стране вышел указ «Мэры всех городов должны проживать не в своём городе, а специальном городе для мэров.» Возникает вопрос: «Где должен жить мэр города мэров?»
Парадокс неожиданной казни

Одному заключённому сказали: «Вас казнят в полдень следующей среды. Это будет неожиданностью для вас.» Заключённый приходит к выводу что раз он знает точное время казни, то казнь никак не сможет стать для него неожиданной, а значит его не смогут казнить. В полдень следующей среды за ним действительной приходит палач и его казнят. И казнь действительно ставится неожиданностью для заключённого.
Парадокс Эватла

Это древняя логическая задача, суть которой такова: «Некий учитель Протагор взял к себе в ученики Эватла и начал обучать его судебному делу. Эватл пообещал оплатить всё обучение, как только выиграет своё первое дело. Однако после обучения Эватл не спешил работать. Тогда Протагор подал на него в суд. В итоге судья так и не смог вынести какое-либо решение, ведь если Эватл выиграет это дело, то он обязан будет отдать деньги Протагору. Таким образом он на самом деле проиграет, а значит ему не нужно будет оплачивать свою учёбу Протагору. И так до бесконечности.
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС!
ЗАВТРА может быть ПОЗДНО!
Феникс Джонатанович ДонХуанЦзы вне форума   Ответить с цитированием
Ответ

Закладки


Ваши права в разделе
Вы не можете создавать новые темы
Вы не можете отвечать в темах
Вы не можете прикреплять вложения
Вы не можете редактировать свои сообщения

BB коды Вкл.
Смайлы Вкл.
[IMG] код Вкл.
HTML код Выкл.
Быстрый переход


Часовой пояс GMT +4, время: 20:21.


╨хщЄшэу@Mail.ru Rambler's Top100


Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd. Перевод: zCarot