|
Полезные ссылки: 0.Ориентация по Форуму 1.Лунные дни 2.ХарДня 3.АстроСправочник 4.Гороскоп 5.Ветер и погода 6.Горы(Веб) 7.Китайские расчёты 8.Нумерология 9.Таро 10.Cовместимость 11.Дизайн Человека 12.ПсихоТип 13.Биоритмы 14.Время 15.Библиотека |
|
22.10.2012, 12:51 | #1 |
Guest
Сообщений: n/a
|
Основы квантовой физики
10 фактов о квантовой механике Леонид Пономарев http://elementy.ru/lib/431444 Серию статей «10 фактов о...» продолжает статья известного физика и популяризатора науки, доктора физ.-мат. наук, члена-корреспондента РАН, заведующего Лаборатории теоретических исследований Института общей и ядерной физики РНЦ «Курчатовский институт», лауреата премии «Просветитель» 2009 года Леонида Пономарева. 1. В природе существует наименьший квант действия (постоянная Планка) h = 6,626075×10–34 Дж·с, который определяет все основные особенности квантовых явлений. 2. Квантовым явлениям присущ корпускулярно-волновой дуализм: в зависимости от условий наблюдения они обнаруживают и волновые (частота ν и длина волны λ колебаний), и корпускулярные (энергия Е и импульс р = mv частицы) свойства. Соотношение между ними осуществляет постоянная Планка h: 3. Волновые и корпускулярные характеристики квантовой системы не могут быть измерены одновременно и с произвольной точностью. Точности Δх и Δр определения координаты х и импульса р системы ограничены соотношением неопределенностей Гейзенберга: Δx ∙ Δp ≥ ħ/2, ħ = h/2π 4. Корпускулярные и волновые свойства квантовой системы дополнительны друг другу: хотя они и не могут быть определены в одном эксперименте, но они равно необходимы для его полной характеристики. 5. Квантовая механика была открыта в двух формах: матричная механика Гейзенберга и волновая механика Шрёдингера. Состоянию n квантовой системы ставится в соответствие комплексная амплитуда вероятности (или волновая функция) , которая подчиняется волновому уравнению Шрёдингера. В квантовой физике оно играет ту же роль, что и уравнения Ньютона в классической механике или уравнения Максвелла в физике электромагнетизма. 6. Плотность вероятности ρn реализации состояния n определяется квадратом амплитуды волновой функции ρn = |ψn(x)|2 , а его волновые свойства (интерференция и дифракция) — его фазой φn(x). 7. Для квантовых систем справедлив принцип суперпозиции состояний ψ = a1ψ1 + a2ψ2 + ..., который позволяет находиться ей в любом из них (в том числе альтернативных) с вероятностью |ai|2. 8. Измеримым характеристикам квантовой системы (x, p, L...) ставятся в соответствие операторы а их измеримые величины находятся как собственные значения матриц pmn, Lmn, ... их операторов: , ... . Эти значения совпадают с собственными значениями краевой задачи для уравнения Шрёдингера. 9. Важнейшая характеристика квантовой системы — спин: он определяет свойства симметрии системы и статистические характеристики квантового ансамбля. Для квантовых объектов с полуцелым спином (электрон, протон и т. д.) справедлив «принцип запрета Паули», который, в частности, позволил объяснить строение Периодической системы элементов Д. И. Менделеева. 10. Квантовым законам подчиняются все явления атомной и ядерной физики, структурная химия и физика твердого тела, физика элементарных частиц и ядерная астрофизика, а также работа ядерного и термоядерного реакторов и ядерное оружие. |
22.10.2012, 12:53 | #2 |
Guest
Сообщений: n/a
|
Википедия
Ква́нтовая меха́ника — раздел теоретической физики, описывающий физические явления, в которых действие сравнимо по величине с постоянной Планка. Предсказания квантовой механики могут существенно отличаться от предсказаний классической механики. Поскольку постоянная Планка является чрезвычайно малой величиной по сравнению с действием повседневных объектов, квантовые эффекты в основном проявляются только в микроскопических масштабах. Если физическое действие системы намного больше постоянной Планка, квантовая механика органически переходит в классическую механику. В свою очередь, квантовая механика является нерелятивистским приближением (то есть приближением малых энергий по сравнению с энергией покоя массивных частиц системы) квантовой теории поля.
Классическая механика, хорошо описывающая системы макроскопических масштабов, не способна описать явления на уровне молекул, атомов, электронов и фотонов. Квантовая механика адекватно описывает основные свойства и поведение атомов, ионов, молекул, конденсированных сред, и других систем с электронно-ядерным строением. Квантовая механика также способна описывать поведение электронов, фотонов, а также других элементарных частиц, однако более точное релятивистски инвариантное описание превращений элементарных частиц строится в рамках квантовой теории поля. Эксперименты подтверждают результаты, полученные с помощью квантовой механики. Основными понятиями квантовой кинематики являются понятия наблюдаемой и состояния. Основные уравнения квантовой динамики — уравнение Шрёдингера, уравнение фон Неймана, уравнение Линдблада, уравнение Гейзенберга и уравнение Паули. Уравнения квантовой механики тесно связаны со многими разделами математики, среди которых: теория операторов, теория вероятностей, функциональный анализ, операторные алгебры, теория групп. |
22.10.2012, 13:01 | #3 |
Guest
Сообщений: n/a
|
Квантовая механика простыми словами Комплексная вероятность Квантовая (волновая) механика должна объяснять как корпускулярные, так и волновые свойства вещества (см. Корпускулярно-волновой дуализм). Любой волновой процесс (например, процесс колебаний маятника) полностью описывается его амплитудой и фазой, поэтому квантовая механика должна использовать именно такое описание. Так мы приходим к описанию системы комплексной волновой функцией, амплитуда и фаза которой полностью определяют состояние системы. Такое описание позволяет естественным образом описывать волновые явления, такие, как интерференцию элементарных частиц или, скажем, дифракцию электронов на кристаллической решетке. Как известно из теории поля, энергия волны квадратична по ее амплитуде, поэтому и вероятность обнаружить частицу в некотором состоянии равна квадрату модуля волновой функции. (Формально это легко понять: такая вероятность не должна зависеть от фазы волнового процесса в данной точке, поэтому может содержать волновую функцию только в комбинации ψψ*=|ψ|²) Одно из отличий квантовой механики от обычной заключается в том, что вероятность обнаружить электрон в данном месте еще не полностью определяет его состояние. Для описания состояния электрона используется комплексная вероятность. Волновая функция и есть значение этой комплексной вероятности. Плотность вероятности обнаружения электрона в данной точке равна квадрату модуля комплексной вероятности. Комплексность приводит к эффекту интерференции: если комплексная вероятность электрона оказаться в точке A после прохождения через одну щель равна p, а комплексная вероятность электрона оказаться в точке A после прохождения через вторую щель равна -p, то если разрешить электрону проходить через обе щели эта вероятность станет равна 0 — то есть в этой точке электрон оказаться не может. Практически интерференция наблюдалась для фотонов, электронов и некоторых атомов. Соотношение неопределённостей Другим необычным свойством электронного «облачка» является его неподатливость. Если мы со всех сторон начнём сдавливать это облачко, стремясь уменьшить его размеры, то оно станет оказывать всё большее и большее давление. И каковы бы ни были «тиски», сдавливающие электрон, рано или поздно электрон вырвется из них. Можно представить себе этот процесс, словно электрон начинает метаться по облачку, и чем меньше его размеры, тем сильнее он мечется, т. е. тем больше его кинетическая энергия. Мы приходим к выводу: если мы пытаемся насильно избавить электрон от неопределённости в координате, то мы неизбежно увеличиваем неопределённость в импульсе электрона. Оказывается, произведение этих двух неопределённостей никогда не бывает меньше конкретной величины, постоянной Планка. Это соотношение называется соотношением неопределённостей. Аналогичные соотношения неопределённостей связывают и некоторые другие характеристики микрочастицы. Такие характеристики частицы называются дополнительными друг к другу. Общее словесное описание этого закона таково: улучшая наше знание о какой-либо одной характеристике частицы, мы ухудшаем наше знание о дополнительных её характеристиках. Важно понимать, что такое «квантовое дрожание» (обычно говорят нулевые колебания) локализованной микроскопической частицы неустранимо, и именно оно приводит к некоторым чисто квантовым явлениям. Например, даже при нулевой температуре, когда, согласно классической механике, никакого движения не должно быть, нулевые колебания по-прежнему остаются. Именно из-за этого жидкий гелий не затвердевает при нормальном давлении даже при нулевой температуре. Наблюдение микрочастиц Править Предыдущее свойство сразу же меняет понятие наблюдения за микрочастицей. Действительно, наблюдение — это процесс взаимодействия объекта с прибором, в результате которого на выходе прибора появляется какой-то определённый сигнал. Но всякое взаимодействие, а значит, и просто наблюдение, само по себе возмущает наблюдаемый объект, изменяет его свойства. И важно, что это возмущение нельзя сделать пренебрежимо малым. Итак, при измерении какого-либо свойства частицы, и даже просто при её наблюдении, исходное состояние частицы, как правило, разрушается. Можно сказать, что какое-либо определённое квантовое состояние частицы — невероятно «хрупкая» вещь. Это важное свойство используется в квантовой телепортации и квантовой криптографии. Квантование Следующим важным свойством микрочастицы является тот факт, что она не всегда может находиться в произвольном состоянии. В частности, если она удерживается какими-либо силами в более-менее локализованном состоянии (то есть «не убегает на бесконечность»), то состояния частицы оказываются квантованными: т. е. частица может обладать только определённым дискретным набором энергий в поле связывающих сил. Это кардинально отличается от классической механики: в ней частица может обладать непрерывным набором энергий. С практической точки зрения, самым важным следствием этого является линейчатый (а не непрерывный) спектр излучения и поглощения атомов. Математические основания квантовой механики Править Математический аппарат квантовой механики — теория гильбертовых пространств и действующих в них операторов. Состояние изолированной квантовой системы — это вектор в гильбертовом пространстве, причем постулируется, что задание вектора состояния — это суть задание полной информации о квантовой системе. Наблюдаемым физическим величинам соответствуют определенные самосопряженные операторы в этом пространстве (См. Оператор физической величины), а результатам измерения соответствующей физической величины отвечают средние значения этих операторов по заданному вектору состояний. Эволюция квантовой системы со временем также определяется с помощью оператора эволюции, который, в свою очередь, выражается через гамильтониан системы. В некоторых ситуациях, структура этого пространства и действующих в нём операторов выглядит существенно проще не в абстрактном виде, а в каком-либо представлении. Так, курсы квантовой механики стандартно начинаются с координатного представления, в котором вместо вектора состояния используется его разложение по базису координатного представления, т. е. волновая функция. Уравнение эволюции во времени в этом случае имеет вид дифференциального уравнения в частных производных и называется уравнением Шрёдингера. Подчеркнём, что какой бы громоздкой ни казалась эта конструкция, она — единственная известная на сегодня теория, способная описать экспериментально наблюдаемое поведение микроскопических частиц. Необычные явления, мысленные эксперименты и парадоксы квантовой механики Соотношение неопределённостей Гейзенберга Дифракция электронов Корпускулярно-волновой дуализм Сверхтекучесть (Бозе-конденсат) Сверхпроводимость Квантовые флуктуациии Квантовая телепортация Квантовая запутанность (Квантовая нелокальность, «Квантовое Вуду») Парадокс Эйнштейна-Подольского-Розена Квантовый парадокс Зенона («Парадокс незакипающего чайника») Кот Шрёдингера Надбарьерное отражение Разделы квантовой механики В стандартных курсах квантовой механики изучаются следующие разделы математическая основа квантовой механики и теория представлений; точные решения одномерного стационарного уравнения Шрёдингера для различных потенциалов; приближённые методы (квазиклассическое приближение, теория возмущений и т. д.); нестационарные явления; уравнение Шрёдингера в трёхмерном случае и теория углового момента; теория спина; тождественность частиц; строение атомов и молекул; рассеяние частиц; Комментарии Обычно квантовая механика формулируется для нерелятивистских систем. Попытка рассмотрения релятивистских частиц в рамках стандартного квантовомеханического подхода наталкивается на трудности, связанные с возможностью порождать новые частицы «из ничего». Эти трудности устраняются в квантовой теории поля, которая и является самосогласованной теорией релятивистских квантовых систем. Важным свойством квантовой механики является принцип соответствия: в рамках квантовой механики доказывается, что в пределе больших энергий (квазиклассический предел) и в случае, когда квантовая система взаимодействует с внешним миром (декогеренция), уравнения квантовой механики редуцируются в уравнения классической физики. Таким образом, квантовая механика не противоречит классической физике, а лишь дополняет её на микроскопических масштабах. Некоторые свойства квантовых систем кажутся нам непривычными (невозможность одновременно измерить координату и импульс, несуществование траектории частицы, вероятностное описание, дискретность наблюдаемых величин). Это вовсе не значит, что они неверны: это означает, что наша повседневная интуиция никогда не сталкивалась с таким поведением, т. е. в данном случае «здравый смысл» не может быть критерием, поскольку он годится только для макроскопических систем. Квантовая механика — самосогласованная математическая теория, предсказания которой согласуются с экспериментами. В настоящее время огромное число приборов, используемых в повседневной жизни, основываются на законах квантовой механики. Важно понимать, что квантовая механика не выводится из классической. Квантовая механика — это теория, построенная «с нуля», только при построении её требуется контролировать принцип соответствия. Грубо говоря, «квантование системы» — это не дополнительное видоизменение классических уравнений движения, а совершенно новый взгляд на систему. Впрочем, неоднократно делались попытки вывести квантовую механику из какой-то более глубокой, и, возможно, более простой, теории, т. е. понять, почему законы квантовой механики именно такие, а не другие. К этим попыткам можно отнести множество интерпретаций квантовой механики. Строго говоря, в настоящее время нет какой-либо одной общепринятой интерпретации квантовой механики. Консервативно настроенные физики предпочитают считать, что вопросы, связанные с интерпретацией квантовой механики, выходят за рамки физики. |
22.10.2012, 13:04 | #4 |
Guest
Сообщений: n/a
|
Принцип неопределённости Гейзенбе́рга
Принцип неопределённости Гейзенбе́рга (или Га́йзенберга) в квантовой механике — фундаментальное неравенство (соотношение неопределённостей), устанавливающее предел точности одновременного определения пары характеризующих квантовую систему физических наблюдаемых (см. физическая величина), описываемых некоммутирующими операторами (например, координаты и импульса, тока и напряжения, электрического и магнитного поля). Соотношение неопределенностей[* 1] задаёт нижний предел для произведения среднеквадратичных отклонений пары квантовых наблюдаемых. Принцип неопределённости, открытый Вернером Гейзенбергом в 1927 г., является одним из краеугольных камней квантовой механики.
|
22.10.2012, 13:04 | #5 |
Guest
Сообщений: n/a
|
Дифракция электронов
Дифракция электронов — процесс рассеяния электронов на совокупности частиц вещества, при котором электрон проявляет волновые свойства. Данное явление называется корпускулярно-волновым дуализмом, в том смысле, что частица вещества(в данном случае взаимодействующие электроны) может быть описана, как волна.
При выполнении некоторых условий, пропуская пучок электронов через материал можно зафиксировать дифракционную картину, соответствующую структуре материала. Поэтому процесс дифракции электронов получил широкое применение в аналитических исследованиях различных материалов. Электронография схожа с рентгеноструктурным анализом и нейтронографией. |
22.10.2012, 13:05 | #6 |
Guest
Сообщений: n/a
|
Корпускуля́рно-волново́й дуали́зм
Корпускуля́рно-волново́й дуали́зм — принцип, согласно которому любой объект может проявлять как волновые, так и корпускулярные свойства. Был введён при разработке квантовой механики для интерпретации явлений, наблюдаемых в микромире, с точки зрения классических концепций. Дальнейшим развитием принципа корпускулярно-волнового дуализма стала концепция квантованных полей в квантовой теории поля.
Как классический пример, свет можно трактовать как поток корпускул (фотонов), которые во многих физических эффектах проявляют свойства электромагнитных волн. Свет демонстрирует свойства волны в явлениях дифракции и интерференции при масштабах, сравнимых с длиной световой волны. Например, даже одиночные фотоны, проходящие через двойную щель, создают на экране интерференционную картину, определяемую уравнениями Максвелла[1]. Тем не менее, эксперимент показывает, что фотон не есть короткий импульс электромагнитного излучения, например, он не может быть разделён на несколько пучков оптическими делителями лучей, что наглядно показал эксперимент, проведённый французскими физиками Гранжье, Роже и Аспэ в 1986 году[2]. Корпускулярные свойства света проявляются при фотоэффекте и в эффекте Комптона. Фотон ведет себя и как частица, которая излучается или поглощается целиком объектами, размеры которых много меньше его длины волны (например, атомными ядрами), или вообще могут считаться точечными (например, электрон). В настоящий момент концепция корпускулярно-волнового дуализма представляет лишь исторический интерес, так как служила только интерпретацией, способом описать поведение квантовых объектов, подбирая ему аналогии из классической физики. На деле квантовые объекты не являются ни классическими волнами, ни классическими частицами, приобретая свойства первых или вторых лишь в некотором приближении. Методологически более корректной является формулировка квантовой теории через интегралы по траекториям (пропагаторная), свободная от использования классических понятий. |
11.03.2014, 09:19 | #7 |
Senior Member
МегаБолтун
|
Загадка наблюдателя: 5 знаменитых квантовых экспериментов
Никто в мире не понимает квантовую механику — это главное, что нужно о ней знать. Да, многие физики научились пользоваться ее законами и даже предсказывать явления по квантовым расчетам. Но до сих пор непонятно, почему присутствие наблюдателя определяет судьбу системы и заставляет ее сделать выбор в пользу одного состояния. «Теории и практики» подобрали примеры экспериментов, на исход которых неминуемо влияет наблюдатель, и попытались разобраться, что квантовая механика собирается делать с таким вмешательством сознания в материальную реальность. Кот Шредингера Сегодня существует множество интерпретаций квантовой механики, самой популярной среди которых остается копенгагенская. Ее главные положения в 1920-х годах сформулировали Нильс Бор и Вернер Гейзенберг. А центральным термином копенгагенской интерпретации стала волновая функция — математическая функция, заключающая в себе информацию обо всех возможных состояниях квантовой системы, в которых она одновременно пребывает. По копенгагенской интерпретации, доподлинно определить состояние системы, выделить его среди остальных может только наблюдение (волновая функция только помогает математически рассчитать вероятность обнаружить систему в том или ином состоянии). Можно сказать, что после наблюдения квантовая система становится классической: мгновенно перестает сосуществовать сразу во многих состояниях в пользу одного из них. У такого подхода всегда были противники (вспомнить хотя бы «Бог не играет в кости» Альберта Эйнштейна), но точность расчетов и предсказаний брала свое. Впрочем, в последнее время сторонников копенгагенской интерпретации становится все меньше и не последняя причина тому — тот самый загадочный мгновенный коллапс волновой функции при измерении. Знаменитый мысленный эксперимент Эрвина Шредингера с бедолагой-котом как раз был призван показать абсурдность этого явления. Итак, напоминаем содержание эксперимента. В черный ящик помещают живого кота, ампулу с ядом и некий механизм, который может в случайный момент пустить яд в действие. Например, один радиоактивный атом, при распаде которого разобьется ампула. Точное время распада атома неизвестно. Известен лишь период полураспада: время, за которое распад произойдет с вероятностью 50%. Получается, что для внешнего наблюдателя кот внутри ящика существует сразу в двух состояниях: он либо жив, если все идет нормально, либо мертв, если распад произошел и ампула разбилась. Оба этих состояния описывает волновая функция кота, которая меняется с течением времени: чем дальше, тем больше вероятность, что радиоактивный распад уже случился. Но как только ящик открывается, волновая функция коллапсирует, и мы сразу видим исход живодерского эксперимента. Выходит, пока наблюдатель не откроет ящик, кот так и будет вечно балансировать на границе между жизнью и смертью, а определит его участь только действие наблюдателя. Вот абсурд, на который указывал Шредингер. Дифракция электронов По опросу крупнейших физиков, проведенному газетой The New York Times, опыт с дифракцией электронов, стал одним из красивейших в истории науки. В чем его суть? Есть источник, излучающий поток электронов в сторону экрана-фотопластинки. И есть преграда на пути этих электронов — медная пластинка с двумя щелями. Какой картины на экране можно ожидать, если представлять электроны просто маленькими заряженными шариками? Двух засвеченных полос напротив щелей. В действительности на экране появляется гораздо более сложный узор из чередующихся черных и белых полос. Дело в том, что при прохождении через щели электроны начинают вести себя не как частицы, а как волны (подобно тому, как и фотоны, частицы света, одновременно могут быть и волнами). Потом эти волны взаимодействуют в пространстве, где-то ослабляя, а где-то усиливая друг друга, и в результате на экране появляется сложная картина из чередующихся светлых и темных полос. При этом результат эксперимента не меняется, и если пускать электроны через щель не сплошным потоком, а поодиночке, даже одна частица может быть одновременно и волной. Даже один электрон может одновременно пройти через две щели (и это еще одно из важных положений копенгагенской интерпретации квантовой механики — объекты могут одновременно проявлять и свои «привычные» материальные свойства, и экзотические волновые). Но при чем здесь наблюдатель? При том, что с ним и без того запутанная история стала еще сложнее. Когда в подобных экспериментах физики попытались зафиксировать с помощью приборов, через какую щель в действительности проходит электрон, картинка на экране резко поменялась и стала «классической»: два засвеченных участка напротив щелей и никаких чередующихся полос. Электроны будто не захотели проявлять свою волновую природу под пристальным взором наблюдателя. Подстроились под его инстинктивное желание увидеть простую и понятную картинку. Мистика? Есть и куда более простое объяснение: никакое наблюдение за системой нельзя проводить без физического воздействия на нее. Но к этому вернемся еще чуть позже. Нагретый фуллерен Опыты по дифракции частиц ставили не только на электронах, но и на куда больших объектах. Например, фуллеренах — крупных, замкнутых молекулах, составленных из десятков атомов углерода (так, фуллерен из шестидесяти атомов углерода по форме очень похож на футбольный мяч: полую сферу, сшитую из пяти- и шестиугольников). Недавно группа из Венского университета во главе с профессором Цайлингером попыталась внести элемент наблюдения в подобные опыты. Для этого они облучали движущиеся молекулы фуллерена лазерным лучом. После, нагретые внешним воздействием, молекулы начинали светиться и тем неминуемо обнаруживали для наблюдателя свое место в пространстве. Вместе с таким нововведением поменялось и поведение молекул. До начала тотальной слежки фуллерены вполне успешно огибали препятствия (проявляли волновые свойства) подобно электронам из прошлого примера, проходящим сквозь непрозрачный экран. Но позже, с появлением наблюдателя, фуллерены успокоились и стали вести себя как вполне законопослушные частицы материи. Охлаждающее измерение Одним из самых известных законов квантового мира является принцип неопределенности Гейзенберга: невозможно одновременно установить положение и скорость квантового объекта. Чем точнее измеряем импульс частицы, тем менее точно можно измерить ее положение. Но действие квантовых законов, работающих на уровне крошечных частиц, обычно незаметно в нашем мире больших макрообъектов. Потому тем ценнее недавние эксперименты группы профессора Шваба из США, в которых квантовые эффекты продемонстрировали не на уровне тех же электронов или молекул фуллерена (их характерный диаметр — около 1 нм), а на чуть более ощутимом объекте — крошечной алюминиевой полоске. Эту полоску закрепили с обеих сторон так, чтобы ее середина была в подвешенном состоянии и могла вибрировать под внешним воздействием. Кроме того, рядом с полоской находился прибор, способный с высокой точностью регистрировать ее положение. В результате экспериментаторы обнаружили два интересных эффекта. Во-первых, любое измерение положения объекта, наблюдение за полоской не проходило для нее бесследно — после каждого измерения положение полоски менялось. Грубо говоря, экспериментаторы с большой точностью определяли координаты полоски и тем самым, по принципу Гейзенберга, меняли ее скорость, а значит и последующее положение. Во-вторых, что уже совсем неожиданно, некоторые измерения еще и приводили к охлаждению полоски. Получается, наблюдатель может лишь одним своим присутствием менять физические характеристики объектов. Звучит совсем невероятно, но к чести физиков скажем, что они не растерялись — теперь группа профессора Шваба думает, как применить обнаруженный эффект для охлаждения электронных микросхем. Замирающие частицы Как известно, нестабильные радиоактивные частицы распадаются в мире не только ради экспериментов над котами, но и вполне сами по себе. При этом каждая частица характеризуется средним временем жизни, которое, оказывается, может увеличиваться под пристальным взором наблюдателя. Впервые этот квантовый эффект предсказали еще в 1960-х годах, а его блестящее экспериментальное подтверждение появилось в статье, опубликованной в 2006 году группой нобелевского лауреата по физике Вольфганга Кеттерле из Массачусетского технологического института. В этой работе изучали распад нестабильных возбужденных атомов рубидия (распадаются на атомы рубидия в основном состоянии и фотоны). Сразу после приготовления системы, возбуждения атомов за ними начинали наблюдать — просвечивать их лазерным пучком. При этом наблюдение велось в двух режимах: непрерывном (в систему постоянно подаются небольшие световые импульсы) и импульсном (система время от времени облучается импульсами более мощными). Полученные результаты отлично совпали с теоретическими предсказаниями. Внешние световые воздействия действительно замедляют распад частиц, как бы возвращают их в исходное, далекое от распада состояние. При этом величина эффекта для двух исследованных режимов также совпадает с предсказаниями. А максимально жизнь нестабильных возбужденных атомов рубидия удалось продлить в 30 раз. Квантовая механика и сознание Электроны и фуллерены перестают проявлять свои волновые свойства, алюминиевые пластинки охлаждаются, а нестабильные частицы замирают в своем распаде: под всесильным взором наблюдателя мир меняется. Чем не свидетельство вовлеченности нашего разума в работу мира вокруг? Так может быть правы были Карл Юнг и Вольфганг Паули (австрийcкий физик, лауреат Нобелевской премии, один из пионеров квантовой механики), когда говорили, что законы физики и сознания должны рассматриваться как взаимодополняющие? Но так остается только один шаг до дежурного признания: весь мир вокруг суть иллюзорное порождение нашего разума. Жутковато? («Вы и вправду думаете, что Луна существует лишь когда вы на нее смотрите?» — комментировал Эйнштейн принципы квантовой механики). Тогда попробуем вновь обратиться к физикам. Тем более, в последние годы они все меньше жалуют копенгагенскую интерпретацию квантовой механики с ее загадочным коллапсом волной функции, на смену которому приходит другой, вполне приземленный и надежный термин — декогеренция. Дело вот в чем — во всех описанных опытах с наблюдением экспериментаторы неминуемо воздействовали на систему. Подсвечивали ее лазером, устанавливали измеряющие приборы. И это общий, очень важный принцип: нельзя пронаблюдать за системой, измерить ее свойства, не взаимодействовав с ней. А где взаимодействие, там и изменение свойств. Тем более, когда с крошечной квантовой системой взаимодействуют махины квантовых объектов. Так что вечный, буддистский нейтралитет наблюдателя невозможен. Как раз это объясняет термин «декогеренция» — необратимый с точки зрения термодинамики процесс нарушения квантовых свойств системы при ее взаимодействии с другой, крупной системой. Во время такого взаимодействия квантовая система утрачивает свои изначальные черты и становится классической, «подчиняется» системе крупной. Этим и объясняется парадокс с котом Шредингера: кот представляет собой настолько большую систему, что его просто нельзя изолировать от мира. Сама постановка мысленного эксперимента не совсем корректна. В любом случае, по сравнению с реальностью как актом творения сознания, декогеренция звучит куда более спокойно. Даже, может быть, слишком спокойно. Ведь с таким подходом весь классический мир становится одним большим эффектом декогеренции. А как утверждают авторы одной из самых серьезных книг в этой области, из таких подходов еще и логично вытекают утверждения вроде «в мире не существует никаких частиц» или «не существует никакого времени на фундаментальном уровне». Созидающий наблюдатель или всесильная декогеренция? Приходится выбирать из двух зол. Но помните — сейчас ученые все больше убеждаются, что в основе наших мыслительных процессов лежат те самые пресловутые квантовые эффекты. Так что где заканчивается наблюдение и начинается реальность — выбирать приходится каждому из нас.
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС! ЗАВТРА может быть ПОЗДНО! |
25.03.2014, 08:56 | #8 |
Senior Member
МегаБолтун
|
Прорывной эксперимент показал, что время «возникает» в результате спутывания квантовых частиц
Физики заявляют: время – это возникающий феномен, побочный эффект квантового спутывания частиц. И теперь у них впервые в мире появились экспериментальные результаты, которые это подтверждают. В 1983 году физики-теоретики Дон Пейдж и Уильям Вутерс предложили новаторскую теорию, основанную на феномене квантового спутывания. Это экзотическое свойство позволяет двум квантовым частицам иметь общее существование, даже если они физически разделены. Квантовое спутывание – это глубинная и мощная связь, и Пейдж и Вутерс продемонстрировали, что её можно использовать для измерения времени. Их идея заключалась в том, что способ, которым пара спутанных частиц эволюционирует, представляет собой некоторый вид часов, которые можно использовать для измерения времени. Но получаемые в их концепции результаты зависели от того, как проводилось наблюдение. Одним из способов является сравнение изменений в спутанных частицах с помощью внешних часов, которые полностью независимы от вселенной. Это эквивалент богоподобного наблюдателя за пределами нашей вселенной, измеряющего эволюцию частиц с помощью внешних часов. В данном случае Пейдж и Вутерс показали, что частицы будут полностью неизменными – время в таком сценарии не будет существовать. Но есть и другой способ, который даёт иной результат. В нём наблюдатель является внутренним и сравнивает эволюцию частиц с помощью остальной вселенной. В таком случае внутренний наблюдатель будет видеть изменение, и эта разница в эволюции частиц в сравнении со всем остальным будет важной мерой времени. Это изящная и мощная концепция. Она предполагает, что время – это возникающий феномен, который появляется в реальности благодаря природе квантового спутывания. И оно существует только для наблюдателей внутри нашей вселенной. Любой богоподобный наблюдатель за её пределами будет видеть статичную неизменяющуюся вселенную, как прежде предсказывало более раннее квантовое уравнение Уилера-ДеВитта. Разумеется, без экспериментального подтверждения идеи Пейджа и Вутерса не более чем философский курьёз. А поскольку у нас нет никакой возможности получить наблюдателя за пределами нашей вселенной – то, по-видимому, у нас нет и никаких шансов когда-либо подтвердить эту теорию. По крайней мере, так было до сегодняшнего дня. Несколько дней назад Екатерина Морева из Istituto Nazionale di Ricerca Metrologica в Турине, Италия, и несколько её коллег сумели впервые экспериментально проверить идеи Пейджа и Вутерса. И они продемонстрировали, что время действительно является возникающим феноменом для внутренних наблюдателей, но его не существует для наблюдателей внешних. Этот эксперимент включает в себя создание игрушечной вселенной, состоящей из пары спутанных фотонов и наблюдателя, который может измерять их состояние одним из двух способов. В первом наблюдатель измеряет эволюцию системы, спутывая себя с ней. Во втором богоподобный наблюдатель измеряет эволюцию в сравнении с внешними часами, которые полностью независимы от игрушечной вселенной. 0 Txyx0XyYp6ZwebFl Сам эксперимент достаточно прямолинеен. Каждый из спутанных фотонов имеет поляризацию, которая может быть изменена прохождением через двулучепреломляющую пластинку. В первом случае наблюдатель измеряет поляризацию одного фотона, таким образом, спутываясь с ним. Затем он сравнивает результат с поляризацией второго фотона. Полученная им разница и будет мерой времени. Во втором случае оба фотона также проходят через двулучепреломляющие пластинки, которые изменяют их поляризацию. Однако в этом случае наблюдатель измеряет только глобальные свойства обоих фотонов, сравнивая их с независимыми часами. В этом случае наблюдатель не может заметить какой-либо разницы между фотонами, не приходя в состоянии спутанности с одним из них. А если нет никакой разницы, система предстаёт перед ним статичной. Другими словами – время в ней не возникает. «Хотя она и невероятно проста, наша модель объединяет два противоречащих друг другу, как казалось прежде, свойства механизма Пейджа-Вутерса», говорит Морева. Это весьма впечатляющий эксперимент. Появление чего-либо является популярной концепцией в науке. В частности, недавно физики заинтересовались идеей, что гравитация также является таким возникающим феноменом. А отсюда до идеи о сходном механизме возникновения времени оставался всего один шаг. Чего не хватает возникающей гравитации – это, разумеется, экспериментальной демонстрации, которая показывала бы, как это работает на практике. Именно поэтому работа Моревы имеет такое важное значение – она впервые в мире помещает абстрактную и экзотическую идею на устойчивое экспериментальное основание. А возможно самым важным результатом этой работы является то, что ей впервые удалось продемонстрировать, что квантовая механика и общая теория относительности не так уж несовместимы. Следующим шагом станет дальнейшее развитие идеи, в частности – на макроскопическом уровне. Одно дело показать, как время возникает в фотонах, и другое – понять, как оно возникает для людей. И это будет непростой работой.
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС! ЗАВТРА может быть ПОЗДНО! |
20.07.2014, 00:01 | #9 |
Senior Member
МегаБолтун
|
Принцип дополнительности и «картина мира» по Нильсу Бору Нильс Бор считал, что впервые сформулированный им для приложения к физике принцип дополнительности имеет большую степень общности и применим в других областях деятельности.
«В предвоенные годы Бору представился ещё одни случай расширить диапазон идеи дополнительности или, вернее говоря, откристаллизовать свои мысли по этому вопросу. В 1938 г. его пригласили выступить на Копенгагенском конгрессе антропологии и этнографии. В огромном зале замка Кронберг Бор выступил с докладом о дополнительных сторонах человеческих культур. Выбор темы был если не продиктован, то, во всяком случае, сделан под влиянием охватившего всех нас растущего беспокойства по поводу бессмысленного растрачивания культурного наследия, совершаемого одной, безумием ослеплённой нацией перед глазами беспомощного и нерешительного человечества. Все, кто служил науке, были глубоко потрясены тем, как искажённые до гротеска научные доктрины использовались для оправдания самых страшных жестокостей. В своём выступлении Бор стремился разоблачить эти опасные заблуждения при помощи своего мощного метода. Он напомнил присутствующим о дополнительных связях в развитии человеческого общества. Во-первых, люди имеют чисто биологические свойства, которые передаются по наследству; во-вторых, - общие убеждения и идеи, которые лежат в основе традиций устной и письменной речи. Бор утверждал, что только последняя, а не первая дополнительность может по праву рассматриваться культурным элементом общества. Ссылаясь на тот факт, что всякая культура, независимо от её уровня развития, достигает своеобразной гармонии. Бор подчеркнул, что следует считать совершенной случайностью, что какая-либо культура принадлежит тому или иному, а не нашему обществу. Однако с тонкий иронией Бор отметил, что благодаря такому взгляду мы отказываемся от предрассудков о превосходстве собственной культуры, свойственных всякой человеческой культуре, замкнутой в себе». Л. Розенфельд, Развитие принципа дополнительности / в Сб. статей: Нильс Бор. Жизнь и творчество, М., «Наука», 1967 г., с. 85-86. «Сам Нильс Бор, по словам его сына Ханса, находясь в Японии, образно объяснил суть принципа дополнительности: талантливый японский художник Хокусай создал свои «Сто картин Фудзиямы», и именно совокупность разных впечатлений, сложившихся при различном освещении, в разные времена года и под разными углами зрения, оказалась способной воссоздать богатство изменчивой, удивительной, очаровательной, всегда разной, но, тем не менее, единственно сущей в реальности Фудзиямы. Гора всё время являет наблюдателю иной облик, иной поворот своей сущности, но она всегда - одна... Примерно так, весьма наглядно для японцев, высказался великий физик». Андреев Ю.А., Исцеление человека, СПб, «Респекс», 1995 г., с. 21. По воспоминаниям современников, Нильс Бор иногда использовал и такую формулировку: «Противоположность верного утверждения - ложное утверждение. Но противоположностью глубокой истины может оказаться другая глубокая истина». Вернер Гейзенберг, Часть и целое. Беседы вокруг атомной физики, М., «Наука», 1989.г., с. 226. Позже отечественный исследователь Ю.М. Лотман напишет: «…механизм культуры может быть описан в следующем виде: недостаточность информации, находящейся в распоряжении мыслящей индивидуальности, делает необходимым для неё обращение к другой такой же единице. Если бы мы могли представить себе существо, действующее в условии полной информации, то естественно было бы предположить, что оно не нуждается в себе подобном для принятия решений. Нормальной для человека ситуацией является деятельность в условиях недостаточной информации. Сколь ни распространяли бы мы круг наших сведений, потребность в информации будет развиваться, обгоняя темп нашего научного прогресса. Следовательно, по мере роста знания незнание будет не уменьшаться, а возрастать, а деятельность, делаясь более эффективной, - не облегчаться, а затрудняться. В этих условиях недостаток информации компенсируется её стереоскопичностью - возможностью получить совершенно иную проекцию той же реальности - перевод её на совершенно другой язык. Польза партнёра по коммуникации заключается в том, что он другой». Цитируется по: Руднев В.П., Энциклопедический словарь культуры XX века. Ключевые понятия и тексты, М., «Аграф», 2009 г., с. 320-321. "Диалог культур и принцип дополнительности" Розов М.А. http://rozova.net/wp-content/uploads...ti_RozovMA.pdf Источник: http://vikent.ru/enc/1631/ Бор, такая красивая теория о дополнении и такое ее красивое решение )) Есть над чем поразмыслить. Гордоновские передачи были интересны тем же свободным разговором на тему. Контроль вообще не "про жионь", а про какие-то особые уникальные, единственно возможные условия, в которых система может существовать (а человек в этом смысле тоже система). Именно существовать. Контроль присущ закрытым системам, которых неизбежно пожрет энтропия. Живая система пластична относительно своих границ, в направлениях и наружу и вовнутрь Восприятие и пластичность. --- http://psylib.ukrweb.net/books/aleki01/index.htm И.С.Алексеев ПРИНЦИП ДОПОЛНИТЕЛЬНОСТИ Из кн.: Методологические принципы физики. История и современность. М.: Наука, 1975, гл.VIII --- Та же психофизиологическая проблема решается скорее всего через этот же принцип дополнительности: рассматриваем человека как систему органов - одна картина, как систему высших психических функций - другая картина. А человек-то, вол он, перед нами, единый и неделимый. Живет себе и ни сном ни духом, что психологи с биологами подрались. )) http://www.solium.ru/forum/showthrea...668#post162668
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС! ЗАВТРА может быть ПОЗДНО! |
01.08.2014, 09:50 | #10 |
Senior Member
МегаБолтун
|
О квантовых "чудесах"... Ученые впервые наблюдали квантовый парадокс Чеширского кота
Изображение: Vienna University of Technology Физикам Франции, Австрии и США в Институте Лауэ-Ланжевена (Гренобль, Франция) удалось провести эксперимент, в результате которого они измерили магнитный момент нейтрона независимо от положения самого нейтрона. Явление, которое наблюдали ученые, называется парадоксом Чеширского кота. Результаты своих опытов авторы опубликовали в журнале Nature Communications. Ученые разделили пучок нейтронов на два в зависимости от ориентацииспинов частиц в них: направления одних совпадали с направлением внешнего магнитного поля, других были противоположны ему. В результате проведения серии измерений, включающих в себя слабое измерение, ученым в одном из пучков удалось отследить следы частиц (измерить поляризациюнейтронов в магнитном поле) из другого, как если бы они там были. Слабое измерение в квантовой механике предполагает малое возмущение частицы измеряемым прибором. Однако такой способ извлечения информации о наблюдаемых предполагает невысокую точность получаемых результатов измерений и, как следствие, большое количество измерений, которое смог обеспечить мощный источник нейтронов в Институте Лауэ-Ланжевена. В своем эксперименте физики использовали нейтронный интерферометр — прибор, который позволяет наблюдать волновые свойства нейтральных нуклонов: единый пучок нейтронов пропускается через интерферометр, где разделяется на два, которые интерферируют между собой и приводят к образованию соответствующей картины. С точки зрения квантовой механики, это есть проявление корпускулярно-волнового дуализма, в котором волновые свойства связаны с наложением волн де Бройля — суперпозицией волновых функций частиц. При этом существенно классическое понятие траекториичастицы теряет смысл: нейтрон может быть одновременно в двух пучках. Теоретическая идея о парадоксе Чеширского кота появилась недавно и сводится к тому, что свойства некоторого объекта могут быть определены (измерены наблюдаемые частицы) там, где его нет. В классической физике это невозможно из-за принципа локальности, согласно которому кроме самого объекта его свойства могут зависеть лишь от его ближайшего окружения. В квантовой механике ситуация другая: квантовая запутанность предполагает, что подсистемы ранее единой системы после разнесения их на расстояния друг от друга продолжают испытывать взаимное влияние. Обсуждение соотнесения принципа локальности и квантовой запутанности принимает различные формы, в зависимости от интерпретации квантовой механики. Чеширский кот является одним их героев сказки английского писателя и математика Льюиса Кэрролла «Алиса в Стране чудес». Животное могло исчезать и оставлять на своем месте собственную улыбку. Ученые считают, что использование парадокса Чеширского кота поможет в создании будущих высокоточных метрологических приборов, а также квантовых устройств с низкой степенью помех, которые возникают из-за вероятностного характера измерений. Лента.Ру Проблемы квантовой теории или небольшая экскурсия в квантовую метафизику В последнее время, особенно в связи с появлением качественно новых приложений квантовой теории, таких, например, как квантовая информатика, включающая в себя квантовую криптографию, квантовую телепортацию и, самое главное, активно развивающиеся работы направленные на создание квантового компьютера, напрямую использующие все особенности квантового мира, на первый план выходят вопросы наиболее глубокого понимания этих особенностей и, самое главное, более глубокого и однозначного понимания результатов, к которым приводят эти особенности. В этой статье мы попробуем увидеть то, что принципиально отличает непривычный нам квантовый мир от хорошо известного и уютного и так привычного нам классического и посмотрим только на один из возможных вариантов решения имеющихся проблем. И начнем мы с краткого обзора того, что отличает квантовую физику от классической, но при этом ей нисколько не противоречит. Наиболее глубокое отличие между классической и квантовой теориями лежит в особой роли эксперимента, или иными словами, в особой роли измерения параметров исследуемой квантовой системы. Речь идет о проблеме измерения в квантовой теории. Если говорить совсем просто, эта проблема связана с тем, что, пытаясь провести измерения параметров микроскопической системы, экспериментатор с необходимостью воздействует на микроскопическую систему макроскопическим прибором, тем самым с неизбежностью сильно изменяя состояние квантовой системы. Формально это выражается в том, что пока измерение не было проведено квантовая система, описываемая основным уравнением квантовой механики уравнением Шредингера, находится в суперпозиции (сумме) собственных состояний, которые могут быть реализованы с той или иной вероятностью. Такое описание полностью детерминировано, поскольку, зная начальное состояние системы, мы можем однозначно описать ее эволюцию в вероятностном ключе. Иными словами, мы не можем указать, в каком именно состоянии находится наша система, но как изменятся вероятные состояния этой системы, указать можем. Однако экспериментатор, проводя измерения (воздействуя на систему макроскопическим прибором) обнаруживает ее в каком-то определенном состоянии, ставшем в процессе измерения, из вероятного реально существующим. Такая ситуация с необходимостью привела к появлению проективного постулата фон Неймана, который носит чисто вероятностный характер и описывает практически непредсказуемые изменения в системе, возникающие в результате проведенного экспериментатором измерения, нарушая тем самым детерминированность описания. Даже зная в каком состоянии находилась система в начальный момент времени, невозможно предсказать точно результат измерения. Понятно, что такая ситуация не вполне корректна, если мы говорим о фундаментальной физической теории. Ведь точно так же, как и квантовая система, являющейся физической системой, так и прибор, который использовал экспериментатор, тоже является физической системой, а сам эксперимент является физическим процессом. Потому и исследуемая система и эксперимент, да и используемый в эксперименте прибор должны описываться единообразно. Вот тут и возникает вопрос о том, как примирить проективный постулат фон Неймана с возникающим противоречием? Нильс Бор, сформулировав свою копенгагенскую интерпретацию, ответил на этот вопрос так. Поскольку прибор является макроскопически большим, то к нему просто неприменимы законы квантовой теории, а он обязан быть таковым, поскольку его свойства должны непосредственно восприниматься экспериментатором, так, как это имеет место в классической физике. Он и должен описываться исключительно законами классической физики. А уравнение Шредингера и проективный постулат фон Неймана применимы только к квантовым системам, причем последний вступает в силу, только если квантовая система вступает во взаимодействие с классическим прибором. Эта точка зрения оказалась весьма удобной для применения и большинство физиков, особенно занимающихся расчетом реальных квантовых систем, другие точки зрения на этот вопрос просто не интересовали. Однако, из копенгагенской интерпретации с неизбежностью следует вывод о том, что наш физический мир разделен на два, абсолютно разных типа объектов – на квантовые и классические объекты, каждый из которых подчиняются своим собственным законам, что является не вполне понятным и приемлемым. И, как результат, стали возникать квантовые парадоксы, к формулировке которых приложили руку выдающиеся физики: Шредингер, Вигнер, Эйнштейн, Бор, Паули. Уиллер, Де Витт и многие другие. Это, например, известный большинству читателей парадокс кота Шредингера, парадокс друга Вигнера, парадокс Эйнштейна – Подольского – Розена. Есть и еще один момент, который стоит упомянуть. Он связан с тем, что тем или иным образом любое измерение с необходимостью связано с осознания его экспериментатором и поэтому результат эксперимента просто не отделим от осознания его человеком, проводящим его. Отделить сам эксперимент от осознания его результатов просто не удается, даже если об этом не вспоминать. Но мы не будем углубляться в тонкости копенгагенской интерпретации квантовой теории и ее критики (желающих совершить этот подвиг могу отослать к замечательной книге Садбери [1], ссылку на которую интересующиеся могут найти в конце статьи), а продолжим знакомство с отличиями квантовой теории от классической. Остальные отличия являются не столь принципиальными, как проблема измерения, но сами по себе достаточно интересны и стоят хотя бы короткого упоминания: 1.Квантовая теория принципиально отличается от теорий, возникших до нее, не только тем, что ее предсказания носят вероятностный характер, но и тем, что вероятность лежащая в ее основе носит принципиально фундаментальный характер. Если использование понятия вероятности в других теориях обусловлено неполнотой информации об исследуемой системе и полагается, что понятие вероятности можно из этих теорий исключить, получив более полные сведения о предмете исследования, то в квантовых теориях получение полной информации о системе невозможно в силу фундаментальных принципов, таких как принцип неопределенности, имеющих свое отображение в соотношении неопределенностей Гейзенберга или, в наиболее общем виде, в соотношении неопределенностей Шредингера. Эту особенность квантовой теории не столько сложно понять, сколько сложно принять. Дело в том, что в классической физике существует основное допущение, гласящее, что всякому событию должна предшествовать его причина. Однако если квантовые законы имеют принципиально вероятностный характер, то отдельные моменты квантовых явлений могут и не иметь предвосхищавших их причин. Именно с этим моментом и связано знаменитое выражение Эйнштейна: «Я не могу поверить, что Бог играет в кости». Из этой ситуации, если посмотреть на нее несколько иначе, можно сделать вывод о том, что утверждение «каждое событие имеет свою причину» мы должны рассматривать не как непреложную истину, неподлежащую сомнениям, а как утверждение о наших намерениях искать причину любого события. Самим своим существованием квантовая теория доказывает это положение; 2. Наиболее загадочным в квантовой теории является способ, которым определенные свойства приписываются частицам в квантовой системе. В отличие от классической физики, это отличие имеет два момента. Во-первых, в квантовой теории отрицается наличие определенных значений тех характеристик, которыми оперирует классическая физика. Делается утверждение, что квантовая частица может, например, не иметь определенного положения в пространстве и определенного значения импульса (одно из соотношений неопределенностей Гейзенберга).
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС! ЗАВТРА может быть ПОЗДНО! |
01.08.2014, 09:51 | #11 |
Senior Member
МегаБолтун
|
Особенно удивительно то, что если частица в определенный момент времени и имеет определенное положение в пространстве (частица локализована), то ее импульс не может быть определен в принципе. Но более того, невозможно точно сказать, где она будет локализована в последующие промежутки времени. Или, другими словами, привычное в классической механике понятие траектории частицы в квантовой теории просто неприменимо, поскольку это понятие с необходимостью требует одновременного с локализацией частицы точного определения ее импульса. А на эту процедуру в квантовой механике наложен принципиальный запрет. Согласитесь, что представить себе такую частицу в рамках наших привычных воззрений достаточно сложно.
Во-вторых, и это более существенно, в квантовой теории вообще не определен статус такого понятия, как свойства системы, когда она не находится в собственном состоянии, т.е., когда осуществляется на систему внешнее воздействие. Непонятно вообще обладает ли система в момент измерения таким свойством, находится ли в одном из собственных состояний. Дело в том, что в процессе измерения можно получить конкретное значение для любой наблюдаемой (наблюдаемой в физике называют любой параметр системы поддающийся измерению). Наблюдаемую можно измерить, придать ей любое значение, так что, нельзя утверждать, что полученные результаты бессмысленны. Однако с другой стороны любое измеренное значение может быть фальсифицировано самим процессом измерения, который есть ни что иное, как эксперимент над квантовой системой, переводящий систему из собственного состояния в некое, достаточно неопределенное, новое состояние, при этом не являющиеся собственным; 3. Положим, что квантовая система состоит, например, из двух частей. Тогда ее состояние можно описать суперпозицией (суммой) двух векторов состояния, построенных по соответствующему закону. Заметим, что подобная ситуация и обсуждалась в знаменитой статье Эйнштейна, Подольского, Розена в которой и был сформулирован знаменитый парадокс, носящий имя авторов этой статьи. Когда система находится в подобном состоянии, оказывается невозможным утверждение, что какая-либо из подсистем находится в определенном состоянии, но возможно получить информацию об одной из подсистем, произведя эксперимент над другой подсистемой. Таким образом, квантовая теория просто отрицает возможность описания окружающего нас мира путем деления на его на части с последующим описанием этих частей. Этот момент является довольно неординарным по своей сути. 4. Ненадолго вернемся к проективному постулату, который обсуждался немного выше. И просто сформулируем некоторые итоги этого обсуждения. Мы видели, что проективный постулат фон Неймана фактически является довольно плохо определенной процедурой. В нем нет точного определения, что есть на самом деле процесс измерения параметров квантовой системы. Нет никакого указания ни на момент времени, ни на механизм перехода системы из достаточно произвольного вероятностного состояния в обнаруженное в результате эксперимента конкретное состояние. И, во-вторых, сам по себе проективный постулат фон Неймана является дуалистичным, поскольку он требует принципиального разделения нашего мира на квантовый микроскопический мир и на макроскопический классический мир. Он так же разделяет закон временной эволюции на закон, определяемый детерминированным (строго упорядоченным во времени) основным уравнением квантовой механики – уравнением Шредингера и на строго вероятностный закон, не вполне определенный проективным постулатом фон Неймана, что хорошо иллюстрируется известным парадоксом с котом Шредингера. Другими словами, он делает физические события следствиями наблюдений вместо того, что бы полагать, что события наблюдаются только потому, что они действительно произошли в окружающем нас мире. Проективный постулат фон Неймана сформулирован в строго локальной форме, когда неявно полагается, что измерения происходят мгновенно, и, следовательно, является чистой абстракцией, не учитывающий тот момент, что реальные измерения никогда не являются мгновенными. Это всегда протяженный во времени процесс. Из этого с необходимостью возникает вывод, что проективный постулат фон Неймана в некотором смысле чужероден самой сути квантовой теории и введен в нее по необходимости, что бы хоть как-то пояснить саму процедуру квантового измерения; 5. И последний момент отличающий квантовую теорию от классической. Говоря об отличиях этих теорий друг от друга, нельзя не упомянуть формальную логику, заложенную в их основание. Отличие квантовой логики от классической весьма существенно. Это вызвано тем, что существует явное неудобство в использовании векторов состояния, которыми оперирует теория, для описания физического состояния исследуемой системы. Это неудобство порождается тем, что в квантовой теории просто не существует взаимнооднозначного соответствия между векторами состояния, используемыми в теории, и физическим состоянием системы. Потому мы просто с необходимостью, пытаясь описать физическое состояние квантовой системы, вынуждены оперировать не с одним вектором состояния, а с целым классом векторов, кратных данному, что несколько усложняет построение геометрии пространства, с которым оперирует квантовая теория, переводя его в разряд проективного. Если говорить проще, то отражением этого факта является утверждение о том, что мы просто не имеем возможности утверждать, что интересующая нас квантовая система находится в данный момент или в данной области пространства в определенном состоянии. Для нас это конкретное состояние фактически остается неопределенным Потому привычная для нас бинарная логика, таблица истинности которой строится из двух элементов "ДА”, "НЕТ”, начинает входить в сильное противоречие с обсуждаемой теорией. Для квантовой теории непротиворечивой, и это можно показать строго, оказывается трехзначная логика, таблица истинности которой складывается уже из трех элементов – "ДА”, "НЕТ” и "НЕОПРЕДЕЛЕНО”. Но это отличие не является причиной для разделения двух миров – квантового и классического, поскольку при плавном переходе от одного описания к другому трехзначная логика столь же плавно переходит в бинарную. Таким образом, мы просто с неизбежностью оказываемся перед двумя, достаточно существенными вопросами:
В настоящее время существует множество ответов на эти вопросы, которые лежат уже больше в философской плоскости, называемой метафизикой, и составляют содержание того, что называется квантовыми интерпретациями, одна из которых, а именно, копенгагенская интерпретация, была нами упомянута выше. На настоящий момент существует чуть менее двух десятков различных вариантов интерпретаций, суть которых весьма многообразна. Начиная от довольно экзотических предположений о движении частиц во времени в противоположном направлении, расслоении многомерных пространств нашего мира, в основе которых лежат струнные космологические модели, и заканчивая интерпретациями откровенно идеалистическими. Но не будем погружаться в эту пучину "-измов”, поскольку многих из них, за редким исключением, объединяет одна и та же довольно неприятная вещь – предположения, заложенные в их основу если и непротиворечивы, то недоступны для прямого доказательства их истинности. Это бесспорно в отношении идеалистических интерпретаций, ведь очень хорошо известно, что никакое утверждение, в основе которого лежит идеализм, не может быть ни опровергнуто ни доказано с помощью каких бы то ни было логических построений. В этом случае, решение главного для понимания вопроса перекладывается только на некие интуитивные суждения и другого тут просто не дано. Другие интерпретации, такие, например, как копенгагенская и производные от нее, позволяют довольно точно рассчитывать квантовые системы для прямого их применения, не озадачиваясь при этом вопросами, к какой картине мира они приводят. Они просто удобны в практической плоскости. Недаром копенгагенскую интерпретацию многие физики считают ортодоксальной и шутливо характеризуют фразой – "это интерпретация вида замолчи и считай!”. Но и с ней, как мы видели, не все так просто. К сожалению, и она не позволяет провести экспериментальную проверку и однозначно сказать, что окружающий нас мир действительно разделен на два мира: квантовый и классический. Так что мы оставим в покое весь этот "квантовый зоопарк”, в котором каждый волен выбирать понимание мира себе по вкусу, впрочем, без малейшей надежды убедиться в правильности своего выбора. Мы сосредоточимся только на одной квантовой интерпретации, которая не только рисует логически стройную, возможно довольно непривычную для нас картину мира, но при этом содержит в себе возможность хоть в будущем, но проверить ее экспериментально. Интерпретации, которая прямо указывает на области пересечения точных и естественных наук. Дальнейший разговор мы посвятим обсуждению квантовой многомировой интерпретации Эверетта. В 1957 году вышла статья Хью Эверетта III, в которой была предложена принципиально новая на момент выхода статьи "многомировая” интерпретация квантовой механики, хотя сам Эверетт называл ее интерпретацией квантовой механики, основанной на понятии относительного состояния. Эта статья, в своё время, прошла почти незамеченной. Но с развитием физики интерес к решению проблемы измерений совместно с противоречивостью проективного постулата в квантовой теории сильно возрос и к интерпретации, предложенной в этой статье. вернулись. Это связано, с одной стороны, с тем, что квантовая теория, нашедшая свои приложения в самых неожиданных областях науки и техники, стала превращаться в инженерную науку, и перестала быть "уделом избранных”. Все больше специалистов стало обращаться к ней. Но были и иные причины возникновения интереса именно к основным проблемам квантовой теории. Потребовались расчеты не только сложных систем, таких как атомы, пучки электронов, фотонов и так далее, но и "элементарных” систем, таких как единичный электрон в одномерной кристаллической решетке, одноэлектронные транзисторы, единичный ион в магнитной ловушке и прочее. Для расчета таких систем хорошо привычная идеология Копенгагенской интерпретации стала просто неприменима. Кроме того, появились качественно новые области приложения квантовой механики, требующие более глубокого понимания квантового мира. Приложения уже напрямую использующие именно отличия квантовой теории от классической. Примером такого приложения является квантовая информатика со всеми своими приложениями, с упоминания которой и начиналась эта статья. Формулируя свою интерпретацию, Эверетт попытался выйти за пределы, фактически чуждого квантовой теории, проективного постулата фон Неймана. Несколько позднее это сделали Уиллер и ДеВитт. Согласно интерпретации Эверетта, а вернее, многомировой интерпретации Эверетта – Уиллера – ДеВитта, предполагается, что различные вероятностные состояния квантовой системы соответствуют различным классическим вероятностям, или классическим мирам. Полагается, что эти классические миры равноправны, то есть, ни один из них не более реален, чем остальные. Так возникла картина многих классических миров Эверетта – Уиллера – ДеВитта. Более подробное описание этой интерпретации, например, можно найти в статье [1]. Но при этом возникает довольно любопытный вопрос – а как быть с тем, что при проведении эксперимента\измерений сознание наблюдателя фиксирует только один из возможных результатов таких измерений? Ведь и в этом случае происходит с неизбежностью все тот же выбор одного из возможных состояний квантовой системы (редукция состояний) и нет ли тут явного противоречия с многомировой интерпретацией. На самом деле, такого противоречия просто не возникает и это можно показать. Дело в том, что сознание наблюдателя как бы разделяется между "возникающими” классическими мирами и каждая "компонента” разделившегося сознания видит только то, что происходит в каждом из этих миров. "Таким образом, сознание наблюдателя расслаивается, разделяется в соответствии с тем, как квантовый мир расслаивается на множество альтернативных классических миров”[3]
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС! ЗАВТРА может быть ПОЗДНО! |
01.08.2014, 09:51 | #12 |
Senior Member
МегаБолтун
|
В интерпретации Эверетта – Уилера - ДеВитта количество таких альтернативных миров определяется исключительно тем набором собственных состояний, к которых может находиться квантовая система. В принципе, их может быть и бесконечное количество, в отличие от картины, которую дает копенгагенская интерпретация Бора, в которой все эти альтернативы просто исчезают, происходит селекция альтернатив. И это исчезновение альтернатив является прямым следствием проективного постулата фон Неймана.
В интерпретации Эверетта такой селекции не происходит. Вместо этого происходит как бы "расслоение” квантового мира на альтернативные реальности и сознание наблюдателя способно воспринимать возникающие альтернативы независимо друг от друга. Или, другими словами, сознание "расслаивается” на свои компоненты, каждая из которых воспринимает свой собственный классический мир. Но субъективно наблюдатель в целом воспринимает так, как будто существует только один классический мир. Согласно Эверетту в каждом из альтернативных классических миров существуют "двойники” одного и того же наблюдателя, воспринимающие каждый свою альтернативу. Эта интерпретация довольно сложна для понимания, поскольку в ней все альтернативы реализуются, а сознание наблюдателя разделяется между всеми альтернативами, но в то же время, индивидуальное сознание воспринимает эту картину так, как будто существует только одна альтернатива, только один классический мир, в котором оно и живет. Подытоживая сказанное, можно утверждать, что сознание в целом разделяется между существующими альтернативами, но при этом индивидуальное сознание субъективно осуществляет селекцию альтернатив, выбирая из всего набора только одну. Такова вкратце интерпретация Эверетта – Уилера – ДеВитта. На первый взгляд она кажется довольно фантастической, но это не совсем так. Во-первых, стоит напомнить, что такая картина мира вполне логична, поскольку связана с отказом от противоречивого по-сути проективного постулата фон Неймана. Постулата, нарушающего одну из основ квантовой теории – ее линейность, отказ от которого напрямую следует из самой сути квантовой теории. Во-вторых, картина становится еще более фантастической, когда интерпретацию Эверетта – Уилера – ДеВитта воспринимают буквально и начинают утверждать, что эвереттовские миры реально существуют. Однако при этом надлежит помнить, что никаких многих миров в действительности нет. Реально существует только один мир и этот мир квантовый по своей природе. Мир, который может находиться во многих вероятностных состояниях, каждое их которых соответствует своему классическому миру. Миру, который и воспринимает сознание. Иными словами, каждый из эвереттовских миров есть ни что иное, как "классическая проекция” единого квантового мира. И эти проекции создаются ни чем иным, как сознанием наблюдателя, в то время, как квантовый мир един и существует независимо от сознания наблюдателя. Если это помнить, то многие фантазии и недоразумения, которые могут возникнуть, просто исчезают. Однако и интерпретации Эверетта – Уиллера – ДеВитта присущ все тот же существенный недостаток. Эту интерпретацию, равно как и подавляющее большинство других, невозможно проверить экспериментально. Сама квантовая теория, да и обсуждаемая интерпретация не содержат, на первый взгляд, инструментов, позволяющих выполнить подобную проверку. Однако, все расчеты, которые могут быть проведены в рамках этой интерпретации, по сути, являются все теми же квантовомеханическими расчетами. Иными словами, интерпретация Эверетта – Уилера – ДеВитта не есть новая квантовая теория. Это всего лишь иное понимание обычной квантовой теории. Прежде, чем мы пойдем дальше, обратим внимание на следующий момент, вытекающий из обсуждаемой интерпретации – если в соответствии с законами квантовой теории разделения альтернатив не происходит, а наблюдатель всегда видит только одну из них, значит, разделение альтернатив и выбор одной из них происходит в сознании наблюдателя. Эта мысль не нова, поскольку об этом говорил и сам Эверетт. Однако можно пойти в этом направлении дальше и предположить, что мы имеем дело не с двумя связанными явлениями (сознанием и разделением квантовых альтернатив), а с одним объектом и отождествим понятие сознания с понятием разделения альтернатив. Рассмотрим эту мысль подробнее. В интерпретации Эверетта – Уиллера – ДеВитта само понятие сознания имеет два аспекта. Во-первых, сознание в целом разделяется между альтернативами, а его "компонента” живет в одной классической альтернативе. Заметим, что в психологии под сознанием понимают именно эту ”компоненту”, живущую в своем классическом мире (сознание, как его определяет психология, это то, что воспринимается субъективно). Таким образом, у нас довольно последовательно возникает гипотеза отождествления, сформулированная известным российским физиком – теоретиком, доктором физико-математических наук, Михаилом Борисовичем Менским: «Способность человека (и любого живого существа), называемая сознанием, - это то же самое явление, которое в квантовой теории называется редукцией состояния или селекцией альтернатив, а в концепции Эверетта фигурирует как разделение единого квантового мира на классические альтернативы» [3] Эта гипотеза, являющаяся сутью расширенной интерпретации Эверетта, позволила намного расширить понимание окружающего мира. Поскольку мы полагаем теперь, что сознание и разделение альтернатив есть суть одно и тоже явление, у нас возникает, по крайней мере, один общий элемент – сознание, связывающий между собой такие, казалось бы, отстоящие далеко друг от друга области познания, как квантовая физика и психология. Однако этот момент требует некоторого пояснения. Эту самую общую часть квантовой физики и психологии следует отождествлять лишь с самым глубинным, самым "примитивным” уровнем сознания. Этот уровень лежит на самой границе сознания и непосредственно связан с процессомосознавания - процесса перехода от состояния "неосознано” к состоянию осознания окружающего мира. Следует так же уточнить, что в данном случае речь не идет о сознании в целом, а лишь о том, неуловимом, отличающим состояния "неосознано” и "осознано”. Становится понятным и еще один момент – почему эти два явления сознание и разделение классических альтернатив, лежащие в традиционно разных сферах познания, плохо поддаются пониманию в рамках традиционного понимания. Просто важнейшие аспекты этих явлений лежат в иных областях, отделяя которые друг от друга, мы упускаем самое важное. В рамках расширенной интерпретации Эверетта стало возможным понимание того, что же есть на самом деле жизнь, в самом общем ее понимании. Для того. Что бы это увидеть попробуем понять, что же есть на самом деле выбор среди возможного набора возможных классических альтернатив. При этом надо иметь в виду, что этот выбор осуществляют и используют живые организмы. Важнейшим моментом является то, что каждая альтернатива есть ни что иное, как вероятное поведение "микроскопической” системы и ее "макроскопического” окружения. Иными словами, это именно та картина окружающего мира, которая возникает в сознании живого организма. В этой картине мир становится классическим, ведущим себя в соответствии с хорошо привычными классическими законами, то есть. этот мир становится предсказуемым, пусть даже в отдельной области, окружающей организм, и живой организм становится в состоянии выработать оптимальную стратегию для выживания в этом мире. Причем важнейшим фактором является именно классичность картины, формируемой сознанием, ее предсказуемость, поскольку в квантовом случае мир бы стал вероятностным, непредсказуемым. Миром, в котором не всегда выполняется принцип причинности. В этом случае выработка оптимальной стратегии выживания живого организма была бы невозможна в принципе, а, следовательно, стала бы невозможной предсказуемость эволюции живых организмов. Таким образом, классичность эвереттовских миров является просто необходимым условием для существования живых организмов. Другими словами, живое существо в отличие от неживого обладает уникальной способностью особым образом воспринимать квантовый мир, проецируя его своим сознанием на мир классический. Мир, в котором с неизменностью осуществляется принцип причинности, в котором хорошо срабатывают приобретенные навыки. Мир, являющийся, по крайней мере, локально предсказуемым. Эти рассуждения делают правдоподобным предположение о том, что явление разделения альтернатив, которое отождествляется с сознанием, не является законом природы, как это обычно предполагается в явной или неявной форме. Сознание является способностью, которую живые существа выработали в процессе эволюции, а точнее – в процессе зарождения жизни. Отсюда следует еще один, казалось бы, парадоксальный вывод о том, что классические законы природы, сформулированные с той или иной степенью точности высшими уровнями сознания, и успешно используемые нами в описании окружающего неживого мира просто не применимы для описания явлений, связанных с сознанием, с живыми организмами, особенно, для описания социума, поскольку в той или иной форме социум есть ни что иное, как продукт высших функций сознания. Но самым интересным в обсуждаемой нами расширенной интерпретации Эверетта является заложенная в ней возможность, пусть и пока гипотетическая, экспериментальной проверки. Надежда ее проведения напрямую связана с разрабатываемыми в настоящий момент квантовыми компьютерами. Это так, поскольку в квантовых компьютерах эволюционируют квантовые состояния - кубиты, то есть, суперпозиции, содержащие огромное число компонент. Каждая компонента несет в себе некоторую информацию и эволюция всей квантовой системы такого компьютера развивается по законам квантового мира, а, следовательно, и обеспечивает одновременное преобразование всех вариантов классической информации. Следовательно, можно надеяться, что квантовый компьютер позволит моделировать такое явление, как сознание. Сознание, как оно определено в рамках расширенной интерпретации Эверетта. Задача состоит в том, что бы каким-либо образом сформулировать критерий выживания и подобрать закон эволюции так, что бы эволюция всех альтернатив была предсказуемой, и выживание в этих альтернативах было возможным. Задача эта крайне сложна, но принципиального запрета на ее реализацию пока не видно. На этом мы завершим нашу небольшую экскурсию в квантовую метафизику, оставив за бортом еще много интересного и удивительного. Автор выражает искреннюю благодарность редактору Damkinу за длительные и плодотворные дискуссии и профессору, доктору технических наук, Семенову Александру Николаевичу за неоценимую техническую помощь, без которой появление этой статьи было бы весьма затруднительно. Литература 1. А.Садбери Квантовая механика и физика элементарных частиц.- М.Мир, 1989 г. 2. М.Б.Менский Концепция сознания в квантовой механике.- УФН, т.175, №4, 2005 г., с. 423 – 435. Алексей Гопман Источник: http://universe-tss.su/main/nauka/
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС! ЗАВТРА может быть ПОЗДНО! |
15.08.2014, 22:27 | #13 |
Senior Member
МегаБолтун
|
Почему прошлое — это вероятность?
По словам Хокинга, одно из следствий теории квантовой механики заключается в том, что события, произошедшие в прошлом, не происходили каким-то определённым образом. Вместо этого они произошли всеми возможными способами. Это связано с вероятностным характером вещества и энергии согласно квантовой механике: до тех пор, пока не найдётся сторонний наблюдатель, всё будет парить в неопределённости. Хокинг: «Независимо от того, какие воспоминания вы храните о прошлом в настоящее время, прошлое, как и будущее, неопределённо и существует в виде спектра возможностей».
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС! ЗАВТРА может быть ПОЗДНО! |
25.06.2016, 09:00 | #14 |
Senior Member
МегаБолтун
|
Как телепортация сохранит России триллионы долларов
На этой неделе стало известно о программе «Национальная технологическая инициатива», созданной Агентством стратегических инициатив по поручению президента Владимира Путина. В ней на 2025-2035 годы запланировано «внедрение нейроинтерфейса, квантовых вычислений, телепортации, использование природоподобных явлений для передачи информации». Поиграли Выводы квантовой механики, описывающей микромир, трудно соотнести с представлениями о классическом мире, описываемом классической механикой. Если положение и импульс классической частицы могут быть одновременно измерены, то в квантовом случае можно узнать лишь вероятность нахождения частицы в том или ином состоянии. Более того, квантовая теория утверждает: когда две системы запутаны (об этом — ниже), измерение состояния одной из них мгновенно сказывается на другой. Альберт Эйнштейн был не согласен с вероятностной интерпретацией квантовой механики. Именно в связи с этим он говорил, что «бог не играет в кости» (на это датский физик Нильс Бор позднее ответил, что не Эйнштейну решать, чем заниматься богу). Немецкий ученый не принимал неопределенности, свойственной микромиру, и считал верным классический детерминизм. Создатель общей теории относительности полагал, что при описании микромира квантовая механика не учитывает некоторых скрытых переменных, без которых сама квантовая теория является неполной. За 90 лет существования понятия квантовой механики (с 1920-х годов) исследователям удалось показать, что Эйнштейн ошибался: в квантовой механике, скорее всего, нет скрытых параметров. Это означает, что ее теоретические выводы имеют прямое отношение к действительности, которая, в свою очередь, не зависит от ее восприятия человеком. У этой теории возникают далеко идущие практические следствия. Связаны они прежде всего с квантовыми компьютерами и квантовой криптографией. Посчитали В обычном компьютере информация представлена с помощью битов, которые могут принимать только одно из двух значений: 0 или 1. В квантовом компьютере понятие (классического) бита обобщается до квантового бита (кубита), и кроме одного из двух значений — 0 или 1 — кубит может принимать бесконечное число значений, являющееся квантовой суперпозицией базисных состояний 0 и 1. В качестве таких состояний может быть использована пара значений какой-нибудь квантовой характеристики частицы (атома, электрона или фотона) — например, ориентация спина. Считается, что массовое производство таких компьютеров приведет к существенному прогрессу в вычислениях; квантовые устройства будут на порядки превосходить возможности современных вычислительных систем. Для запоминающих устройств (физических носителей) могут использоваться, например, специальные сверхпроводящие твердотельные материалы, частицы в которых могут быть приведены в особое возбужденное (квантовое) состояние, идентифицируемое как состояние кубита. Управлять таким материалом (и квантовыми состояниями) можно с помощью, например, лазерного излучения. «Жуткое дальнодействие» между Бобом и Алисой Изображение: NASA/JPL-Caltech Основные затруднения в использовании квантовых компьютеров сводятся к их высокой чувствительности к влиянию окружающей среды, которое может необратимым образом изменять квантовые состояния. Поэтому перед началом работы квантовые системы настраиваются (калибруются) продолжительное время; специалистам требуется учесть в настройке десятки параметров. Кроме того, работа квантового компьютера предполагает использование специальных квантовых алгоритмов, адаптированных для конкретного устройства. Запутали Квантовая криптография представляет собой метод шифрования информации (ее защиты) при помощи квантовой запутанности и специальных квантовых протоколов. В перспективе это должно привести к созданию рабочих невзламываемых алгоритмов генерации случайных чисел и даже квантовых денег. Квантовой запутанностью называется явление, при котором квантовые состояния частиц (например, спин электрона или поляризация фотона), разнесенных на расстояние друг от друга, не могут быть описаны взаимонезависимо. Процедура измерения состояния одной частицы приводит к изменению состояния другой — таким образом состояние одной частицы может быть передано другой даже в том случае, если она удалена от нее, — именно в этом и заключается квантовая телепортация и одно из главных отличий микромира от макромира, с которым был не согласен Эйнштейн. В типичном эксперименте по квантовой запутанности разнесенные на расстояние взаимодействующие агенты — Алиса и Боб — обладают каждый одной частицей (фотонов или электронов) из пары запутанных. Измерение частицы одним из агентов — например, Алисой — коррелирует с состоянием другой, хотя Алиса и Боб заранее не знают о манипуляциях друг друга. Это означает, что частицы каким-то образом сохраняют информацию друг о друге, а не обмениваются ею, скажем, со световой скоростью при помощи какого-либо известного науке фундаментального взаимодействия. Эйнштейн назвал это «жутким дальнодействием». Запутанные частицы нарушают принцип локальности, согласно которому на состояние объекта может оказывать влияние только его близкое окружение, поэтому считается, что для квантовой механики локальный реализм (принцип локальности) не выполняется. Построили В настоящее время квантовые исследования переходят из теоретического русла в практическое. Рекорды квантовой телепортации составляют 102 километра (по оптоволокну) и 143 километра (по воздуху). Китай заявил о намерении осуществить квантовую телепортацию между Землей и космосом на расстояние 1,2 тысячи километров. Все это позволит иметь заинтересованным сторонам надежный и защищенный канал связи. Устройства компании D-Wave Systems Фото: dwavesys.com Сегодня все больше крупных компаний заинтересованы в разработке и покупке квантовых компьютеров. Самое популярное устройство такого рода — D-Wave 2X, созданное канадской компанией D-Wave Systems. В настоящее время D-Wave Systems является единственной в мире фирмой, создающей и продающей свои квантовые компьютеры. Интерес к D-Wave 2X проявили Google и НАСА. Как показали тесты со специализированным программным обеспечением, проведенные D-Wave Systems, устройство до 600 раз быстрее решает задачи оптимизации по сравнению с классическим компьютером (без учета времени ввода и вывода данных). Если учитывать загрузку и выгрузку информации, D-Wave 2X обгоняет обычный компьютер в 15 раз. D-Wave 2X нередко критикуют те, кто имеет гораздо более скромные результаты. Уже создан прототип квантового компьютера, который допускает масштабирование при реализации квантового алгоритма Шора, предлагающего способ разложения натурального числа на простые множители. Именно он используется при считывании информации с банковских пластиковых карточек и в других конфиденциальных операциях. Максимальная безопасность процедуры позволит сохранить конфиденциальность и сэкономить большое количество денег — тем, у кого они есть, и тем, кто планирует вкладывать их в исследования ученых. Источник
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС! ЗАВТРА может быть ПОЗДНО! |
19.11.2017, 23:18 | #15 |
Senior Member
МегаБолтун
|
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС! ЗАВТРА может быть ПОЗДНО! |
Закладки |
|
|
Похожие темы | ||||
Тема | Автор | Раздел | Ответов | Последнее сообщение |
Связь физики и соционики | Чу-До | 3 ОБСУЖДЕНИЯ | 3 | 08.06.2011 18:31 |