|
Полезные ссылки: 0.Ориентация по Форуму 1.Лунные дни 2.ХарДня 3.АстроСправочник 4.Гороскоп 5.Ветер и погода 6.Горы(Веб) 7.Китайские расчёты 8.Нумерология 9.Таро 10.Cовместимость 11.Дизайн Человека 12.ПсихоТип 13.Биоритмы 14.Время 15.Библиотека |
29.11.2016, 10:59 | #136 |
Senior Member
МегаБолтун
|
Туманность Бумеранг: холоднее пустоты самого космоса
Куда бы вы ни отправились во Вселенной, везде будут источники тепла. Чем дальше вы от них ото всех, тем холоднее. На расстоянии в 150 миллионов километров от Солнца Земля поддерживает скромную температуру в 26-27 градусов по Цельсию, которая была бы градусов на 50 холоднее, не будь у нас атмосферы. Еще дальше — и Солнце будет нагревать объекты все меньше и меньше. Плутон, к примеру, температурой в -229 градуса по Цельсию: достаточно холодный, чтобы жидкий азот замерз. Мы можем отправиться еще дальше, в межзвездное пространство, где ближайшие звезды будут в световых годах от нас. Холодные молекулярные облака, которые бродят изолированно по всей галактике, еще холоднее, на несколько градусов выше абсолютного нуля. Поскольку звезды, сверхновые, космические лучи, звездные ветры и все остальное обеспечивают галактику энергией в целом, сложно найти что-то еще более холодное в Млечном Пути. Но если выйти в межгалактическое пространство, за миллионы световых лет от ближайших звезд, единственным, что будет поддерживать вас в тепле, будет послесвечение Большого Взрыва, космический микроволновый фон. При температуре ниже 3 градусов по Цельсию выше абсолютного нуля эти едва обнаруживаемые фотоны являются единственным источником тепла. Поскольку каждое место во Вселенной постоянно бомбардируется этими инфракрасными, микроволновыми и радиофотонами, можно подумать, что 2,725 градуса Кельвина (-270,42 по Цельсию) — это самое холодное, что можно найти в природе. Чтобы испытать температуру холоднее, нужно подождать, пока Вселенная расширится еще больше, растянет длины волн этих фотонов и остынет до еще более низкой температуры. И это произойдет, конечно же, но не скоро. К этому моменту Вселенная станет в два раза старше — пройдет еще 13,8 миллиарда лет — и самая низкая температура едва ли будет превышать хотя бы один градус выше абсолютного нуля. Однако вы уже сейчас можете найти место, которое холоднее самых глубоких глубин межгалактического пространства. Даже далеко ходить не придется. Это туманность Бумеранг, расположенная всего в 5000 световых годах от нас, в нашей собственной галактике. В 1980 году, когда ее впервые наблюдали в Австралии, она была похожа на двудольную асимметричную туманность, за что ее и прозвали «бумерангом». Последующие наблюдения показали, что эта туманность является в действительности препланетарной туманностью, промежуточным этапом в жизни умирающих звезд типа Солнца. Все подобные звезды эволюционируют в красных гигантов и заканчивают свою жизнь в виде планетарной туманности и белого карлика, когда внешние слои раздуваются, а центральное ядро сжимается. Но между красным гигантом и планетарной туманностью есть фаза препланетарной туманности. Перед тем как внутренняя температура звезды повысится, но после того, как начнется выталкивание внешних слоев, мы получим препланетарную туманностью. Иногда в виде сферы, но чаще в виде двух биполярных джетов, она будет выбрасывать вещество из солнечной системы в межзвездную среду. Этот этап очень короткий: всего несколько тысяч лет. Пока что в такой фазе было обнаружено около десятка звезд. Но туманность Бумеранга особенная даже среди них. Ее газовые джеты выбрасываются в десять раз быстрее, чем обычно, двигаясь на скорости около 164 километров в секунду. Она теряет массу быстрее, чем положено: каждый год улетучивается материал на несколько Нептунов. В результате получается самое холодное место в известной Вселенной, и в некоторых частях туманности температура составляет около 0,5 градуса Кельвина: полградуса выше абсолютного нуля. Все остальные планетарные и препланетарные туманности гораздо теплее, но почему так происходит — это объяснить очень просто. Попробуйте глубоко вдохнуть, задержать дыхание на три секунды и затем выпустить воздух. Можно проделать это двумя способами, удерживая руку на расстоянии 15 сантиметров от вашего рта.
Внешние слои звезды, которые породили туманность Бумеранг, находятся в таких же условиях:
Источник
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС! ЗАВТРА может быть ПОЗДНО! |
02.12.2016, 08:45 | #137 |
Senior Member
МегаБолтун
|
«Вторая Земля» оказалась частью тройной системы
19views 0 Астрономы из Чили, Франции и Швейцарии доказали, что Проксима Центавра, ближайшая к Солнцу звезда со «второй Землей» — потенциально обитаемой планетой, действительно вращается вокруг двойного светила Альфа Центавра. Исследование опубликовано на сайте arXiv.org, кратко о нем сообщает издание New Scientist. Ученым удалось с рекордной, по их словам, точностью, измерить лучевые скорости двух светил — Альфа Центавра AB и Проксимы Центавра. Скорость перемещения Проксимы Центавра в пространстве, по оценкам ученых, отличается от таковой для Альфа Центавра AB всего на 270 метров в секунду — половины этой величины достаточно, чтобы первое светило не было поглощено вторым. Самая малая звезда из трех, Проксима Центавра, вращается вокруг Альфа Центавра AB с периодом 550 тысяч лет. Эксцентриситет (параметр вытянутости) орбиты равен 0,5, минимальное расстояние между Проксима Центавра и Альфа Центавра AB равно 4,3 тысячи астрономических единиц, максимальное — 13 тысяч астрономических единиц. Дискуссии о том, являются ли Альфа Центавра A, Альфа Центавра B и Проксима Центавра тройной звездой, ведутся в течение последних ста лет, начиная с открытия последнего светила в 1915 году. Расстояние от Земли до Проксимы Центавра равняется 4,24 светового года. Температура поверхности красного карлика более чем в два раза (почти на три тысячи кельвинов), масса — в десять раз, а светимость — на четыре порядка меньше, чем у Солнца. В окрестностях Проксимы Центавра обнаружена потенциально обитаемая планета Proxima b. Источник
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС! ЗАВТРА может быть ПОЗДНО! |
06.12.2016, 10:06 | #138 |
Senior Member
МегаБолтун
|
Хаббл обнаружил красиво запутанную галактику
Новые наблюдения космического телескопа Хаббла выявили сложную структуру газовых лент вокруг эллиптической галактики NGC 4696, расположенной в 150 миллионов световых лет от Земли. Багровый нити, открытые более 15 лет назад, теперь были подробно изучены международной группой во главе с астрономами в Кембриджском университете. Завитки являются 30,000 световых лет в длину и 200 световых лет толщиной, и они имеют плотность в 10 раз выше, чем окружающий газ. С такими газовыми щупальцами, вы, вероятно, видели достаточно галактик, чтобы знать, где это происходит. Виновником сложной структуры является сверхмассивная черная дыра в центре галактики. Она затапливает внутреннее ядро галактики энергией, а холодный газ вытесняется радиационным давлением. Нити имеют общую массу в 1,6 миллиона раз больше, чем Солнце, и в сочетании с увеличением плотности газа. Это как правило приводит к рождению новой звезды, но исследователи не заметили ничего, и они думают, что новая звезда-формация тормозится сильным магнитным полем. Эта невероятная полоса пыли не является исключительной в этой галактике, но недавно выпущенное изображение захватывает дух. Все наблюдения и анализы, проведенного исследования опубликованы в Ежемесячном журнале Королевского астрономического общества (MNRAS). NGC 4696 — центральная и самая большая галактика группы Центавра, которая насчитывает сотни объектов. Она находится в той же самой категории некоторых самых ярких и самых крупных галактик во вселенной, и это еще не все, феноменальные красные полосы, замеченные астрономами, делают NGC 4696 истинной космической причудой. Источник
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС! ЗАВТРА может быть ПОЗДНО! |
08.12.2016, 00:47 | #139 |
Senior Member
МегаБолтун
|
Астрономы стали свидетелями необычного квантового свойства вакуума
Вакуумное двупреломление — это очень необычный квантовый феномен, наблюдавшийся только на атомном уровне. В теории он может происходить, например, возле нейтронных звезд. Благодаря наличию очень мощных магнитных полей, возле таких звезд могут хаотичным образом возникать области с появляющейся и исчезающей материей. В 1930-х годах немецкие физики Вернер Гейзенберг и Ганс Генрих Ойлер вывели теорию, согласно которой намагниченный вакуум по отношению к проходящему сквозь него свету может вести себя как призма. Совсем недавно ученые из итальянского Национального института астрофизики и Зеленогурского университета (Польша) стали свидетелями этого необычного свойства вакуума. Используя Очень Большой Телескоп (VLT) Европейской Южной обсерватории, ученые под руководством Роберто Мигнани провели наблюдение за звездой RX J1856.5-3754, находящейся в 400 световых годах от нас. Нейтронные звезды, как правило, очень компактны, однако в десятки раз более массивны, по сравнению с нашим Солнцем. Благодаря этому они обладают очень мощными магнитными полями. Вакуум в обычном состоянии (по крайней мере согласно Эйнштейну и Ньютону) ничем себя не проявляет, и свет может распространяться через него без каких-либо изменений. Однако согласно квантовой электродинамике (QED), пространство заполнено бесконечно появляющимися и исчезающими виртуальными частицами. Очень мощные магнитные поля, например, те, которые обычно имеются возле нейтронных звезд, могут модифицировать свойства пространства. Используя новое оборудование Очень Большого Телескопа в Чили, исследователи смогли провести наблюдение за нейтронной звездой в видимом спектре, фактически раздвинув границы существующих технологий наблюдений. Исследование звезды RX J1856.5-375 показало наличие значительного уровня линейной поляризации (16 процентов), которую ученые интерпретировали как следствие эффекта вакуумного двупреломления. «Высокий уровень поляризации, который мы отметили с помощью VLT, весьма сложно объяснить с помощью наших нынешних моделей, если только речь не идет об эффекте вакуумного двупреломления, предсказанного еще 80 лет назад квантовой электродинамикой», — говорит Мигнани.По мнению Мигнани, благодаря будущим и более мощным телескопам ученые смогут больше узнать об этом необычном квантовом эффекте, наблюдая за другими нейтронными звездами. «Проводимые измерения уровней поляризации с помощью телескопов нового поколения, например, того же Европейского Экстремально Большого Телескопа ESO (EELT), смогут сыграть ключевую роль в проверке предсказаний квантовой электродинамики в вопросе эффектов вакуумного двупреломления возле большинства нейтронных звезд», — отмечает ученый. «Нынешние исследования впервые были проведены в видимом спектре. Дальнейшие наблюдения можно будет также вести и в рентгеновском диапазоне волн», — добавляет исследователь Кинва Ву.Источник
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС! ЗАВТРА может быть ПОЗДНО! |
13.12.2016, 11:11 | #140 |
Senior Member
МегаБолтун
|
Внутри звезд допустили существование жизни
Ученые из Эдинбургского университета (Великобритания) допустили, что в атмосферах коричневых карликов — объектов, занимающих промежуточное положение между звездами и планетами, могут обитать живые организмы. Исследование, доступное в библиотеке электронных препринтов arXiv.org, основывается на работе американских ученых Карла Сагана и Эдвина Салпитера, опубликованной 40 лет назад. В кубическом метре газовой оболочки Земли содержится, по разным оценкам, от тысячи до миллиона микробов, размеры пятой части из которых в поперечном сечении превышают 0,5 микрометра. Время нахождения этих микроорганизмов в атмосфере не определено, однако известно, что некоторые из них проявляют метаболическую активность, особенно в облаках. Это позволяет предположить, что в плотных атмосферах других планет могут обитать живые организмы. Кроме Земли, в Солнечной системе плотные газовые оболочки есть, например, на Венере: на высоте около 55 километров от ее поверхности температуры сравнимы с земными, и в присутствии воды, вероятно, там могли бы какое-то время обитать микроорганизмы. В 1976 году Саган и Салпитер попробовали на примере Юпитера описать существ, которые могли бы обитать в атмосферах газовых гигантов. По мнению авторов исследования, в них, за счет конвекции (из-за внутренних источников тепла) и солнечного излучения, могла бы существовать устойчивая экосистема из четырех типов организмов. Сверху бы располагались первичные фотосинтезирующие автотрофы. Ниже — более крупные автотрофы или гетеротрофы, а также хищники. Четвертая группа организмов обитала бы в условиях крайне высоких температур. Британские ученые пошли дальше американских и предположили, что жизнь может быть в верхних слоях атмосферы коричневых карликов спектрального класса Y — ультрахолодных планетоподобных объектов, массы которых недостаточно для поддержания продолжительного течения термоядерных реакций . Самым удачным кандидатом на обитаемость, по мнению авторов, является WISE J0855-0714. Коричневый карлик расположен на расстоянии 7,2 светового года от Земли в созвездии Гидры, в пять раз крупнее Юпитера, а температура верхних слоев его атмосферы составляет минус 23 градуса Цельсия. Это означает, что в газовой оболочке субзвездного (планетоподобного) объекта существуют облака из жидкой или замороженной воды. Скорее всего, атмосферы ультрахолодных коричневых карликов сильно запылены. Это означает, что в них присутствуют заряженные аэрозольные частицы, которые могут обеспечить производство соединений, необходимых для жизни. О коричневых карликах спектрального класса Y известно мало, однако данные о более теплых субзвездах классов M, L и T свидетельствуют, что в них есть все химические элементы для производства аммиака, водорода, воды, метана, азота, гидросульфида аммония и сульфида натрия. Коричневый карлик спектрального класса Y (в представлении художника) Изображение: wikipedia.org Используя модели пищевых цепочек фитопланктонов, британские авторы описали эволюцию микробной экосистемы в атмосфере небесного тела, подобного WISE J0855-0714. Модель, предложенная авторами, позволяет, по их словам, оценить вероятность выживания тех или иных организмов в различных условиях окружающей среды. Входные параметры теории следующие: верхние слои атмосферы коричневого карлика примерно на 85 процентов состоят из водорода и на 15 — из гелия, зона обитаемости расположена в верхнем слое газовой оболочки толщиной около ста километров, температура в нем меняется от минус 23 градусов Цельсия (наверху) до минус 73 (в глубине). Оценки скорости конвективного переноса газовых масс, используемые учеными, — несколько метров в секунду или же практически полное отсутствие ветра. Представление об организмах, которые бы обитали в WISE J0855-0714, ученые почерпнули из работы Сагана и Салпитера. Типичный обитатель Юпитера или ультрахолодного коричневого карлика моделируется организмом сферической формы, который характеризуется своими радиусом и массой, а также толщиной и плотностью покрова, проницаемого для атмосферных газов. Например, плотность покрова такого микроба оценивалась учеными в 0,5-1,5 грамма на кубический сантиметр, тогда как значение этого же параметра для населяющих Землю бактерий и человека — примерно 1 грамм на кубический сантиметр. Плотность внутри оболочки, для простоты, ученые приняли равной плотности атмосферы снаружи — 0,4-1,2 миллиграмма на кубический сантиметр. Рост размеров организмов происходит за счет потребления биомассы, а движение — только за счет конвекции. Время жизни ограничено наступлением сроков естественной смерти (половина проживших 30 суток микробов погибает) и доступом к питательным ресурсам. Вне верхнего слоя толщиной сто километров, в пределах которого в зависимости от своей массы распределены организмы, жизни нет. Облака на Венере Фото: NASA Начальные условия для распространения жизни в пределах этого слоя следующие: скорость конвективного переноса — десять метров в секунду, начальное население — сто микроорганизмов с общей массой одна миллиардная грамма, распределенных радиально в слое случайным образом. Ученые рассмотрели две тысячи лет эволюции подобной экосистемы. Оказалось, что она становится устойчивой уже через несколько лет, самыми жизнеспособными организмами в этом случае оказались микробы, которые в десять раз крупнее земных (с массой десять в минус двенадцатой степени грамм и диаметром 0,0001 сантиметра). Ученые пробовали поменять некоторые начальные условия, чтобы оценить их влияние на динамику системы в будущем. Оказалось, что уменьшение скорости конвективных потоков приводит к снижению массы организмов. В случае, когда ветров почти нет, масса существ будет сравнима с таковой для земных вирусов. Так где же искать миры с подобной жизнью? Юпитер Фото: NASA По оценкам ученых, в Млечном Пути находится несколько миллиардов ультрахолодных карликов, из них около десяти — на расстоянии десяти парсек от Земли. Коричневые карлики могут существовать в устойчивом состоянии до десяти миллиардов лет — этого более чем достаточно, по мнению ученых, для того, чтобы в их пределах развилась примитивная жизнь. С течением времени, по мере охлаждения небесного тела, экосистема будет все больше опускаться в глубь субзвезды, что, как полагают авторы, скажется на эволюции существ. Несмотря на кажущуюся фантастичность, работа ученых, как отметили в Science, не лишена смысла. Обнаружение подобных миров, в случае их реальности, потребует высокоточных спектральных методов, которые позволили бы отследить биологические сигнатуры, характерные для живых организмов, прежде всего метан и кислород, и отделить их от процессов неживой природы. Источник
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС! ЗАВТРА может быть ПОЗДНО! |
28.12.2016, 00:28 | #141 |
Senior Member
МегаБолтун
|
Астрономы поймали еще 6 странных радиосигналов
36views 19 В марте этого года ученые поймали 10 мощных всплесков радиосигналов, идущих из одного и того же пространства космоса. На днях ученые поймали еще 6 новых сигналов из того же места, расположенного за пределами нашего Млечного Пути. Эти быстрые дискретные радиоимпульсы (FRB) очень заинтересовали ученых своей необычностью. Длились они всего несколько миллисекунд, но при этом за очень короткий промежуток времени генерировали столько энергии, сколько Солнце смогло бы только за целый день. До обнаружения первых 10 сигналов в марте практически все в научном сообществе считали, что такие радиоимпульсы являются одиночными явлениями, происходящими в самых разных уголках Вселенной. Так как ранее наблюдавшиеся радиовсплески не обладали каким-то общим характерным признаком, исследователи не смогли разобраться в том, что же на самом деле является их источником. Что интересно, сами по себе такие радиоимпульсы не являются редким явлением. Ученые отмечают, что по всей Вселенной ежедневно происходит около 2000 FRB, однако их очень низкая продолжительность не позволяет выяснить их природу. Немаловажно отметить, что открывать FRB наука начала только в 2007 году – до этого момента имеющееся научно-техническое оборудование было не настолько мощным и точным, чтобы можно было в режиме реального времени за ними следить. Как правило, приходилось изучать эти явления уже после того, как они происходили. Однако в этом году астрономы обнаружили сразу 16 выбросов, идущих с одного и того же направления, поэтому у ученых, вероятнее всего, наконец появится возможность сузить круг поиска и подозреваемых в этих невероятно мощных, но кратковременных всплесках. Первые десять всплесков радиоволн были пойманы нашими телескопами в марте этого года, однако, как указывают ученые, свое начало они берут еще в мае и июне 2015-го. Они не только оказались первыми FRB-сигналами, обнаруженными за пределами Млечного Пути (все наблюдаемые ранее предположительно образовывались внутри нашей галактики), но еще и демонстрировали общие характерные черты, чего ранее никогда не наблюдалось. Шесть радиосигналов были обнаружены обсерваторией Аресибо в Пуэрто-Рико в промежутке всего 10 минут между каждым, четыре остальные были обнаружены в течение месяца, при этом все 10 пришли из одного и того же пространства космоса. Когда команда исследователей ознакомилась с более ранними астрономическими данными, было обнаружено, что FRB-сигнал 2012 года также пришел к нам с того же самого пространства космоса. То есть в общей сложности уже 11 сигналов брали свое начало из одного и того же региона. Это навело ученых на мысль о том, что за пределами Млечного Пути может находиться какой-то неизвестный, но невероятно мощный источник, способный с весьма частой периодичностью посылать короткие, но очень мощные сигналы. Новые шесть сигналов обнаружили ученые из канадского Университета Макгилла. Все они пришли из того же пространства космоса, поэтому источнику этих радиосигналов решили в конечном итоге дать общее название FRB 121102. «Мы сообщаем о радио- и рентгеновских наблюдениях единственного сейчас источника кратковременных, но повторяющихся радиосигналов, FRB 121102», — пишет команда исследователей в журнале The Astrophysical Journal. «Мы обнаружили еще шесть всплесков радиосигналов, идущих от этого источника: пять из них было обнаружено с помощью телескопа Грин-Бэнк на частоте 2 ГГц, последний, на частоте 1,4 ГГц, был получен с помощью телескопа обсерватории Аресибо. Теперь в общей сложности количество одинаковых сигналов составляет 17».Команда указывает, что не может определить точное расположение FRB 121102, но учитывая, насколько их низшие частоты были замедлены, можно с уверенностью сказать, что свое начало они берут далеко за пределами Млечного Пути. И как раз эта информация может дать нам некоторые важные подсказки о том, чем же именно является их источник. Одним из наиболее популярных предположений является столкновение двух нейтронных звезд, формирующих черную дыру. К такому мнению ученых подтолкнула специфика кратковременности радиосигналов. Две сталкивающиеся нейтронные звезды, вероятнее всего, просто выбрасывают всплески радиоволн во все уголки Вселенной. Однако повторяющаяся природа этих удаленных сигналов, особенно если учитывать их единое направление, может говорить о том, что сталкивающиеся нейтронные звезды здесь ни при чем. По крайней мере в случае именно этих FRB-сигналов. Все 17 сигналов указывают на то, что в этом регионе космоса происходят менее драматичные моменты. Наиболее вероятной гипотезой на данный момент является то, что все эти сигналы могут идти от какого-то экзотического объекта вроде молодой нейтронной звезды, которая вращается с такой частотой, что способна испускать невероятно мощные импульсы. Следует также понимать, что наблюдаемые разные типы FRB необязательно должны противоречить друг другу. Более ранние исследования указывают на то, что во Вселенной могут встречаться разные типы дискретных радиоимпульсов, имеющих разные источник происхождения. Это по крайней мере подтверждается тем фактом, что повторяющиеся радиоимпульсы FRB 121102 оказались шире, чем те, которые наблюдались внутри нашей галактики. Однако без дополнительных доказательств ученые пока не готовы дать уверенный ответ на вопрос об их реальном источнике. «Является ли источник радиоимпульсов FRB 121102 уникальным объектом или же все радиоимпульсы имеют свойство повторяться – в любом случае очень интересно выяснить и понять принципы и особенности такой быстрой межгалактической радиопередачи», — говорят исследователи.Ученые продолжают следить за небом и ждут появления новых FRB как внутри, так и снаружи нашей галактики, надеясь на сей раз уже точно выяснить их природу. Согласно исследователям, эти знания помогут нам разгадать и другие загадки нашей Вселенной. Источник
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС! ЗАВТРА может быть ПОЗДНО! |
30.12.2016, 13:35 | #142 |
Senior Member
МегаБолтун
|
Пять причин того, почему этот год был прекрасен для освоения космоса
9views 0 14 февраля 1990 года, когда космический аппарат «Вояджер-1» покидал окрестности нашей планеты, легендарный астроном и космолог Карл Саган предложил инженерам NASA бросить один последний взгляд на Землю с расстояния в 6,4 миллиарда километров. Снимок, который удалось сделать «Вояджеру» показал Землю в виде крошечной точки света — бледно-голубой точки, как ее назвали — размером в 0,12 пикселя. И тогда Саган выразил одну из своих знаменитых мыслей: «Наше позерство, наше воображаемое самомнение, заблуждение, что у нас есть некоторое привилегированное положение во Вселенной, бросает вызов этой точке бледного света. Наша планета — одинокое пятнышко в большой, обволакивающей темноте космоса». В пучине бытия и повседневности легко забыть, что мы живем во Вселенной размером в 93 миллиарда световых лет в поперечнике (с учетом космической инфляции). При том, что в нашей наблюдаемой Вселенной около двух триллионов галактик, в ней большей звезд, чем песчинок на пляжах Земли. Наши умы просто не успели достаточно развиться, чтобы по-настоящему понять такие грандиозные масштабы. Перед нам целая Вселенная, которую можно наблюдать и исследовать. Именно это стремление побуждает многочисленные частные и государственные организации внедрять и создавать инновации в области астрофизики, космических технологий и даже колонизации других планет. Но выйти в космос, освоить его, начать в нем жить и пересекать астрономические расстояния — это поразительно тяжело. Перед вами пять причин того, что 2016 год стал довольно успешным для выполнения этих наших задач. Подвиг космического зонда «Юнона», множество повторных посадок ракет SpaceX и многое другое. Международные космические программы растут и ширятся по всему миру, благодаря действиям космических агентств мирового уровня в России, Индии, Японии, Китае, США и ОАЭ. NASA — не единственное агентство, которое занимается долгосрочными проектами освоения космоса. Мы все больше наблюдаем рост интереса частных компаний к этому. В марте NASA отобрало научно-технические предложение более чем от 100 компаний с общей суммой контрактов на 100 миллионов долларов в рамках программы инновационных исследований малого бизнеса (SBIR). Многие стартапы заявляют о своем существовании и диверсифицируют промышленность, обеспечивая еще более инновационные решения в области космических путешествий. В то время как астрофизики продолжают уточнять и понимать природу космоса, инженеры и предприниматели совершенствуют инструменты, которые помогают нам в этом. Дальновидные и предприимчивые, такие как Илон Маск, Ричард Брэнсон и Джефф Безос, развивают проекты, которые обещают нам удивительное будущее, от космического туризма до многоразовых ракет и даже колонизации Марса. Космический зонд «Юнона» прожужжал в облаках Юпитера https://www.youtube.com/watch?v=G6Ky6W167Vs Несмотря на то, что Юпитер — крупнейшая планета в нашей Солнечной системе, много вопросов о ней остаются без ответа. 4 июля космический аппарат «Юнона» успешно вышел на орбиту газового гиганта. Пятилетнее путешествие обошлось в миллиард долларов и считается одним из самых сложных проектов, которые удалось осуществить NASA. Анализ Юпитера крупным планом может дать новое понимание происхождения нашей Солнечной системы. Кроме того, «Юнона» стала одним из самых далеко забравшихся космических аппаратов, использующих энергию солнца, отметив, таким образом, существенный прогресс в области солнечных батарей. Аппарат начал передавать данные и снимки обратно на Землю. Космический преемник Хаббла, наконец, завершен Космический телескоп Джеймса Уэбба, известный также как преемник Хаббла, поможет нам заглянуть к краям нашей наблюдаемой Вселенной. Покрывая большую длину волн, чем мог позволить телескоп Хаббла, и пользуясь повышенной чувствительностью, мы сможем заглянуть дальше назад во времени и пространстве, чем когда-либо прежде. https://www.youtube.com/watch?v=PhGfgREoBj4 Вглядываться в более ранние моменты существования Вселенной, очевидно, непросто. Как и многие другие проекты такого масштаба, Джеймс Уэбб испытывал проблемы с бюджетом и планированием. Телескоп обошелся в четыре раза больше, чем планировалось первоначально, и был достроен на семь лет позже. Несмотря на эти неудачи, последний сегмент основного зеркала телескопа был установлен в феврале, а телескоп был завершен в ноябре. Запускать его планируют в октябре 2018 года. SpaceX успешно садит ракеты SpaceX Илона Маска нацелена сократить расходы на транспорт и освоение космоса, в конечном итоге позволив людям достичь других планет и обосноваться на них. Многоразовые ракеты компании Falcon 9 осуществили удивительные подвиги в этом году. В 2016 году SpaceX «спасла» пять ракет (в общей сложности их шесть). Четыре ракеты приземлились на роботизированную платформу в море, и это было значительно сложнее, чем посадить их на земле. Морские посадки необходимы, чтобы SpaceX могла отправлять многоразовые ракеты на несколько разных орбит. https://www.youtube.com/watch?v=sYmQQn_ZSys Несмотря на некоторые довольно впечатляющие достижения этого года, запуск химических ракет в космос все еще опасное дело. Ракета SpaceX взорвалась на стартовой площадке в сентябре — это вторая неудача за два года — вызвав задержки и длительное расследование. Тем не менее SpaceX продолжает вводить новшества, и каждая попытка приближает ее к своим целям. Следующие шаги включают запуск восстановленных и переоборудованных многоразовых ракет. В то же время Blue Origin Джеффа Безоса, которая также работает над многоразовыми ракетами, запустила и приземлила несколько суборбитальных многоразовых ракет в 2016 году. Колонизация Марса: Маск представил межпланетную транспортную систему Можем ли мы жить на другой планете? В сентябре Илон Маск представил межпланетную транспортную систему SpaceX (ITS) с целью создания человеческой колонии на Марсе. Каждый космический корабль, который будет выводиться в космос самой мощной в мире ракетой, сможет вместить до 100 человек и отправить их на Красную планету по меньшей мере десять раз. https://www.youtube.com/watch?v=0qo78R_yYFA Очевидно, впереди у Маска много проблем: Марс нужно сделать пригодным для обитания, создать нормальную пищу и обеспечить источники воды и защиту от радиации. Во многом такой проект будет полагаться на общественное и частное сотрудничества. Освоение космоса определенно обеспечит нам проверку на прочность как дружного вида. Крошки-корабли отправятся к звездам в рамках Breakthrough Starshot Путешествие на другую планету в нашей Солнечной системе — чрезвычайно сложная задача. Но поездка в другие солнечные системы несоизмеримо сложнее. Одно из самых больших препятствий в космических путешествиях заключается в том, чтобы разработать космический аппарат, способный путешествовать достаточно быстро, чтобы покрыть гигантские расстояния космоса. Современные ракеты попросту слишком медленные и тяжелые, чтобы доставить нас до звезд в кратчайшие сроки. Важно разработать альтернативную систему движения. В апреле 2016 года интернет-инвестор и научный филантроп Юрий Мильнер вместе со Стивеном Хокингом анонсировали проект Breakthrough Starshot, который совместит крошечные космические аппараты с альтернативными видами движения и позволит людям, наконец, выйти в межзвездное пространство. Цель проекта на 100 миллионов долларов — выяснить, как использовать лазерный и световой парус, чтобы разогнать наноаппарат до скорости в 20% световой. Эти крошечные аппараты будут оснащены камерами, фотонными двигателями, источниками энергии и связи. За 20 лет такой аппарат сможет добраться до ближайшей к нам системе Альфа Центавра. https://www.youtube.com/watch?v=wMkWGN1G6Kg Конечно, впереди предстоит проделать еще много работы, но одно очевидно: благодаря миниатюризации космические аппараты и их компоненты становятся все меньше и все дешевле, что явно пойдет на пользу проекту. Инициатива проекта состоит в том, чтобы продвинуть людей вперед и ответить на вопрос: одиноки ли мы во Вселенной? Существуют ли обитаемые миры в нашей галактической окрестности? Можем ли мы сделать большой скачок к звездам? Можем ли мы действовать вместе? Последний рубеж Независимо от того, будет человечество углублять понимание Вселенной или наращивать технологический потенциал для космических путешествий, наша цель — выйти за пределы Земли, покинуть планету, стать космическим видом и понять Вселенную как можно глубже. Пока космос остается нашим последним рубежом. Быть в космосе дорого, сложно и опасно. Но не стоит забывать, как далеко мы зашли с тех пор, как наши предки покинули Африку 200 000 лет назад, как научились разделять и властвовать, жить и процветать везде на Земле. У каждой проблемы есть решение, и хотя мы не живем в идеальном мире, люди исключительно умело умеют расширять границы. Источник
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС! ЗАВТРА может быть ПОЗДНО! |
10.01.2017, 11:19 | #143 |
Senior Member
МегаБолтун
|
Версия ученых: Звезда Сверхновая оказалась разорвана черной дырой
В 2015 году пределов Земли достигло световое эхо потрясшего Вселенную мощного взрыва, от эпицентра которого нас отделяет гигантское расстояние в 3,8 млрд. световых лет. Событие получило условное название ASASSN-15lh. Первоначально возникла версия появления самой яркой за всю историю астрономических наблюдений Сверхновой. Достаточно отметить, что ее яркость в 50 раз превышала аналогичный показатель всего Млечного Пути. Однако позже с помощью данных обсерватории Лас Кумбрес ученые пришли к выводу, что причиной гигантской вспышки стало нечто другое. Согласно новой версии, массивную звезду, оказавшуюся слишком близко около вращающейся черной дыры (также известной, как черная дыра Керра) буквально разорвало на части. Причиной мегавзрыва стали так называемые приливные силы, о которых стало известно в 1975 году. Однако наблюдать за ними оказалось непросто. По мере приближения звезды к вращающейся черной дыре ее мощная гравитация активизирует колоссальные приливные силы звезды. При этом, что вполне естественно, ближняя ее часть подвергается более сильному гравитационному воздействию по сравнению с остальными. Возникший в результате этого дифференциал силы и стал причиной разрыва звезды. А дальше, по мнению ученых, произошло следующее. Фрагменты разрушенной звезды прежде чем оказаться внутри черной дыры начали сталкивать между собой с огромной скоростью. Мощность выделенной при этом энергии в 570 млрд. раз превысила интенсивность солнечных вспышек, наблюдаемых нами с Земли. https://www.youtube.com/watch?v=fmtEb7zJ7k8 Источник
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС! ЗАВТРА может быть ПОЗДНО! |
19.01.2017, 15:56 | #144 |
Senior Member
МегаБолтун
|
Астрономы открыли таинственно тускнеющую двойную звезду
Список загадочных звезд, тускнеющих по необъяснимой причине, пополнило двойное светило FO в созвездии Водолея, потускневшее в семь раз за последние годы, пишет Astrophysical Journal. «Когда эта звезда «вышла» из-за Солнца, мы были шокированы тем, что она была в семь раз тусклее, чем в прошлые эпохи наблюдений. Угасание звезды является признаком того, что белый карлик перестал воровать материю у своей соседки, но почему это произошло, непонятно. И хотя FO Водолея начала повторно набирать яркость, этот процесс занял слишком много времени», — объясняет Колин Литтлфилд (Colin Littlefield) из университета Нотр-Дам (США). Звезда FO Водолея принадлежит к редкому типу двойных звезд, образованных крупным белым карликом и небольшой «нормальной» звездой, вращающихся очень близко друг к другу. Благодаря этому часть внешних слоев обычной звезды попадает в гравитационную «сферу влияния» карлика, и тот перетягивает на себя ее материю. Белый карлик Этот процесс повышает яркость системы и заставляет ее колебаться в некоторых пределах по мере того, как белый карлик «переваривает» украденный им водород и сжигает его, порождая мощные пучки рентгеновского излучения. FO Водолея является одной из самых близких к Земле звезд такого типа – она удалена всего на 500 световых лет. В 2014 году, когда телескоп «Кеплер» начал работу в рамках миссии K2, он изучил ту часть созвездия Водолея, где находится FO. Это позволило ученым впервые точно измерить ее светимость и узнать другие астрофизические параметры. Через два года, когда FO Водолея «выглянула» из-за Солнца, ученые решили повторно проверить результаты наблюдений, полученные «Кеплером». В этот момент их ожидал сюрприз: оказалось, что яркость звезды упала на более чем две звездных величины, понизившись в семь раз. Ничего подобного астрономы еще не видели, наблюдая за двойными светилами. Изменилась не только яркость, но и поведение FO Водолея – звезда начала «моргать», повышая или понижая свою светимость на 50% каждые 22 и 11 минут, переключаясь между этими циклами каждые два часа. Как полагают ученые, эти флуктуации в яркости связаны с тем, как быстро белый карлик вращается по орбите вокруг «обычной» звезды. Почему упала яркость светила, астрономы пока не знают. Они не могут объяснить, почему белый карлик временно прекратил свой «обед», а затем с большой задержкой вернулся к своей обычной «диете». Литтлфилд и его коллеги считают, что причиной могло стать крупное пятно на поверхности «обычной» половинки FO Водолея, которое случайным образом попало в точку, откуда карлик «ворует» материю. Сильное магнитное поле в области пятна замедлило процесс перетекания водорода, что и понизило яркость системы. С другой стороны, это не объясняет замедленные темпы восстановления яркости звезды, поэтому она попадает в категорию загадочных светил, подобных «звезде пришельцев» KIC 8462852 и другим объектам, чье поведение современная наука пока не может объяснить. Источник
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС! ЗАВТРА может быть ПОЗДНО! |
26.01.2017, 13:18 | #145 |
Senior Member
МегаБолтун
|
Названы причины необъяснимой смерти галактик
Международная группа астрономов раскрыла причины гибели галактик, которые без видимых причин начинали терять большое количество газа. Это происходит из-за приливного обдирания, вызванного прохождением галактики через межгалактическую среду. Статья ученых опубликована в журнале Monthly Notices of the Royal Astronomical Society. Показано, что галактики, находящиеся в составе крупных скоплений, теряют водород, необходимый для формирования звезд. Ученые объясняли это явление несколькими механизмами, включая взаимодействие межзвездной и межгалактической сред, известное как приливное обдирание (ram-pressure stripping), истощение пригодного для звездообразования газа (странгуляция), а также гравитационное влияние соседних объектов. Однако для того, чтобы выяснить действительную причину потери вещества, необходимо было исследовать галактики, находящиеся в различных условиях. Исследователи изучили данные о более чем 30 тысячах галактик, полученные с помощью телескопа обсерватории Апачи-Пойнт и радиотелескопа в Аресибо. Все галактики были разделены на три группы — центральные (самые массивные в скоплениях), изолированные (одиночные галактики) и спутники (находящиеся рядом с массивной галактикой). Ученые сфокусировали свое внимание на спутниках, общая численность которых составила около 11 тысяч. Астрономы выяснили, что на долю пригодного для звездообразования газа влияет масса гало темной материи, которое окружает галактику. Если она превышает сотни миллиардов масс Солнц, то потери вещества будут происходить очень быстро. Такое нельзя объяснить с помощью странгуляции, поэтому исследователи пришли к выводу, что виновником гибели галактик является приливное обдирание. Происходит это из-за того, что галактика взаимодействуют с перегретой межгалактической плазмой, которая «сдувает» водород. Результаты также продемонстрировали, что этому процессу подвергаются не только галактики из крупных скоплений, но и те, что находятся в парах. К таким относится и Млечный Путь, который обладает двумя спутниками — Большим и Малым Магеллановыми Облаками. Источник
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС! ЗАВТРА может быть ПОЗДНО! |
06.02.2017, 16:38 | #146 |
Senior Member
МегаБолтун
|
НАСА показало «звездную смерть»
Космический телескоп Hubble сделал снимок бриллиантовой «звездной смерти», расположенной в туманности Тухлое яйцо. На снимке заметен умирающий красный гигант OH231.8+4.2, который сбрасывает окружающие его оболочки. Туманность Тухлое яйцо расположена в созвездии Кормы на расстоянии более пяти тысяч световых лет от Земли. В ней содержится много серы, по этой причине она и получила свое название. Телескоп Hubble запущен в космос 24 апреля 1990 года при помощи шаттла Discovery. На следующий день обсерватория вышла на расчетную низкую околоземную орбиту и приступила к работе. Масса Hubble достигает 11 тонн. Его сход с орбиты, как ожидается, произойдет не ранее 2030-го. Обсерватория способна исследовать космос в видимом, инфракрасном и ультрафиолетовом диапазонах излучения. Источник
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС! ЗАВТРА может быть ПОЗДНО! |
06.02.2017, 20:20 | #147 |
Senior Member
МегаБолтун
|
В остатках взорвавшейся звезды нашли сверхскоростную «пулю»
Японские астрофизики из Университета Кэйо нашли странный объект, который перемещается внутри облака межзвездного газа со скоростью 120 километров в секунду. Ученые назвали его Пулей и полагают, что он мог образоваться в результате деятельности скрытой черной дыры. Пресс-релиз исследования опубликован на сайте Нобеямской радиообсерватории. Специалисты с помощью телескопов в Чили и Японии изучали молекулярное облако, образованное остатками сверхновой W44 и удаленное от Земли на 10 тысяч световых лет. Они обнаружили, что небольшая часть звездного вещества резко разгоняется и ее общая кинетическая энергия в несколько десятков раз больше той, что могла бы быть получена при взрыве звезды. Астрономы полагают, что Пуля могла возникнуть по двум причинам. Например, газ скапливается вблизи черной дыры в плотную массу, что приводит к взрыву и выбросу вещества. По второму сценарию, часть облака разгоняется самой черной дырой. По мнению ученых, поиск подобных перемещений вещества в молекулярных облаках позволит выявить черные дыры, которые не обнаруживаются другими способами. Источник
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС! ЗАВТРА может быть ПОЗДНО! |
16.02.2017, 09:49 | #148 |
Senior Member
МегаБолтун
|
Астрофизики впервые наблюдали разрушение звезды
Астрофизикам из Европы и Северной Америки впервые удалось проследить за эволюцией бывшего красного сверхгиганта спустя всего три часа после его взрыва как сверхновой звезды II типа. Вспышка в соседней с Млечным Путем галактике NGC 7610, произошедшая более трех лет назад, привлекла внимание множества ученых. Исследование, посвященное этому событию, опубликовано в журнале Nature Physics. Сегодня ученые относительно неплохо понимают процессы, предшествующие разрушению тяжелых звезд (исчерпание термоядерного топлива или гравитационный коллапс), и их дальнейшую судьбу. Светила, которые в несколько раз тяжелее Солнца и в десятки тысяч раз его ярче, превращаются в красных сверхгигантов, по мере такой эволюции теряющих около десяти процентов своей массы. Взрыв делает такие объекты чрезвычайно яркими, так что их можно наблюдать даже в самых далеких галактиках. Между тем наблюдение в режиме реального времени взрывов сверхновых из-за своей статистической редкости до сих пор оставалось недоступным астрономам. Например, имеющиеся оценки указывают, что сверхновая в Млечном Пути взрывается в среднем реже одного раза в год. В новом исследовании ученым удалось проследить за объектом в галактике NGC 7610, спектральные характеристики которого, полученные в последние годы, указывали на его чрезвычайную нестабильность (быструю потерю массы) и, как следствие, высокую вероятность его взрыва как сверхновой. Спиральная галактика с перемычкой NGC 7610 расположена в созвездии Пегаса на расстоянии 50,95 мегапарсека от Земли. Взорвавшийся в ней объект iPTF 13dqy (иначе — SN 2013fs) является обычной сверхновой II типа (в ее спектре присутствуют линии водорода). Впервые ее наблюдали в режиме реального времени 6 октября 2013 года при помощи автоматизированной системы iPTF (Intermediate Palomar Transient Factory), повторно — через 50 минут. Третий раз SN 2013fs наблюдали через сутки при помощи научного инструмента WiFeS (WideField Spectrograph) телескопа Австралийского национального университета. Наблюдения iPTF 13dqy После этого внимание к объекту iPTF 13dqy ученых резко возросло. За SN 2013fs стали наблюдать практически во всем электромагнитном диапазоне длин волн — рентгеновском, ультрафиолетовом, оптическом и инфракрасном. Специалисты получили следующие данные, прекрасно укладывающиеся в имеющиеся представления об эволюции красного сверхгиганта — уничтоженной в ходе взрыва сверхновой звезды. Разрушение ядра красного сверхгиганта инициирует формирование сверхзвуковой ударной волны. Когда она достигает поверхности звезды, объект начинает ярко светиться в видимой части излучения — происходит то, что привыкли называть вспышкой сверхновой. Одновременно с этим перерождение светила сопровождается интенсивным ультрафиолетовым излучением. Продолжительность и сила вспышки зависят от структуры оболочки звезды-прародителя и скорости потери ею массы. Источник
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС! ЗАВТРА может быть ПОЗДНО! |
26.02.2017, 20:12 | #149 |
Senior Member
МегаБолтун
|
0 фактов о космосе
Источник
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС! ЗАВТРА может быть ПОЗДНО! |
01.03.2017, 00:13 | #150 |
Senior Member
МегаБолтун
|
Млечный Путь мешает нам видеть звезды в правильном месте
Чтобы точно определять расположение далеких космических объектов, нужно учитывать гравитационные отклонения луча, который идет от них через нашу галактику И Земля, и вся Солнечная система находятся в глубинах галактики Млечный Путь, и на остальную часть Вселенной мы смотрим именно сквозь нашу галактику. Это важно учитывать в астрофизических наблюдениях, поскольку гравитационное поле Млечного Пути, его неоднородность могут повлиять на точность определения координат далёких – внегалактических – объектов Насколько сильно такое влияние, попытались оценить специалисты из Астрокосмического центра Физического института им. Лебедева и Института космических исследований РАН, Московского физико-технического института, а также Института астрофизики Общества им. Макса Планка. Астрофизика имеет дело с несколькими базовыми параметрами космических объектов – это собственные движения, угловые размеры и тригонометрические параллаксы (видимые смещения) небесных тел, в том числе звезд. Их определяют методами астрометрии, и для того, чтобы найти, например, положение или лучевую скорость звезды, требуется некоторая система координат, относительно которой они будут измеряться. Все используемые сегодня системы координат, в том числе и Международная небесная система отсчёта (International Celestial Reference Frame, ICRF) построены по координатам нескольких сотен «определяющих» внегалактических источников. Квазары и далекие галактики служат идеальными опорными, или реперными, точками, поскольку их угловое движение очень мало – порядка одной сотой угловой миллисекунды (для сравнения: диаметр Луны – чуть более 31 угловой минуты). Астрофизическое приборостроение развивается бурными темпами и ожидается, что в ближайшем будущем точность радиоинтерферометрических наблюдений достигнет 1 микросекунды, а оптических – 10 микросекунд в год. Однако при такой точности возникает новая сложность: в наблюдения вмешиваются эффекты общей теории относительности, и прежде всего отклонение луча при движении в гравитационном поле. Когда луч от далёкого объекта проходит вблизи какого-либо массивного тела, он слегка отклоняется его гравитацией. Это отклонение обычно очень мало, однако если на пути встречается много таких объектов, то оно может стать весьма значительным. Более того, так как объекты движутся, угол отклонения луча меняется во времени, и координаты источника начинают как будто блуждать вблизи их истинного значения. Важно отметить, что эффект «блуждания» координат относится ко всем далеким источникам, в том числе и к реперным, на которых строятся системы координат. «При попытке улучшить точность реализации опорной системы координат появляется ограничение, которое уже невозможно обойти, просто улучшая точность регистрирующей аппаратуры. Фактически возникает гравитационный шум, не позволяющий повысить точность реализации системы координат выше определенного уровня», – говорит Александр Лутовинов, профессор РАН, руководитель лаборатории Института космических исследований (ИКИ) РАН и преподаватель МФТИ. Исследователи попытались оценить, насколько сильно такой гравитационный шум может помешать наблюдениям. Основой для расчётов стали современные модели распределения вещества в Галактике. Для каждой модели были построены двумерные карты неба, на которые нанесены средние смещения далёких источников относительно их истинного положения. «Наши вычисления показали, что для разумного времени наблюдений около десяти лет величина среднего квадратичного отклонения смещения положения источников будет составлять около 3 микросекунд дуги на высоких широтах, увеличиваясь до нескольких десятков микросекунд в центральных областях Галактики, – рассказывает Татьяна Ларченкова, старший научный сотрудник АКЦ ФИАН. – А это значит, что когда точность измерений в абсолютной внеатмосферной астрометрии достигнет микросекунд, то эффект «блуждания» координат опорных источников, которое вызывает нестационарное поле Галактики, будет необходимо учитывать». Исследователи изучили свойства такого гравитационного шума, а также предложили математические методы, которые помогут частично компенсировать влияние эффекта «блуждания» координат. Результаты работы опубликованы в журнале The Astrophysical Journal. Источник
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС! ЗАВТРА может быть ПОЗДНО! |