|
Полезные ссылки: 0.Ориентация по Форуму 1.Лунные дни 2.ХарДня 3.АстроСправочник 4.Гороскоп 5.Ветер и погода 6.Горы(Веб) 7.Китайские расчёты 8.Нумерология 9.Таро 10.Cовместимость 11.Дизайн Человека 12.ПсихоТип 13.Биоритмы 14.Время 15.Библиотека |
|
Важная информация |
|
Опции темы | Поиск в этой теме | Опции просмотра |
19.02.2013, 19:28 | #1 |
Senior Member
МегаБолтун
|
Органы и системы, или, организм изнутри.
http://coral-club.mksat.net/vodaeda/put1.html
12 систем организма и их функции Весь организм человека условно поделён на системы органов, объединённых по принципу выполняемой работы, функции. Эти системы называются анатомо-функциональные, их в организме человека двенадцать. Для того, чтобы понять, как сохранить здоровье, нужно, прежде всего, понять взаимосвязь систем организма и правила их безопасной рациональной эксплуатации.Всё в природе подчинено единому закону целесообразности и экономному принципу необходимости и достаточности. Особенно это видно на примере животных. В природных условиях животное ест и пьёт только тогда, когда проголодается и почувствует жажду, и ровно столько, чтобы насытиться. Маленькие дети сохраняют эту природную способность не принимать пищу и не пить тогда, когда хочется нам, а подчиняются только своим желаниям и инстинктам. Взрослые, к сожалению, утратили эту уникальную способность: мы пьём чай, когда собираются друзья, а не когда чувствуем жажду. Нарушение законов природы ведёт к разрушению нашего организма как части этой самой природы. Каждая система выполняет в организме человека определенную функцию. От качества её исполнения зависит здоровье организма в целом. Если какая-нибудь из систем по каким-то причинам ослаблена, другие системы способны частично взять на себя функцию ослабленной системы, помочь ей, дать возможность восстановиться. Например, при снижении функции системы мочевыделения (почек), функцию очистки организма берёт на себя дыхательная система. Если она не справляется, подключается выделительная система - кожа. Но в этом случае организм переходит в другой режим функционирования. Он становится более ранимым, и человек должен снизить обычные нагрузки, дав ему возможность оптимизировать режим жизнедеятельности. Природа дала организму уникальный механизм саморегуляции и самовосстановления. Пользуясь этим механизмом экономично и бережно, человек способен выдерживать колоссальные нагрузки. Системы организма 1. Центральная нервная система – регуляция и интеграция жизненных функций организма. 2. Система органов дыхания – обеспечение организма кислородом, который необходим для всех биохимических процессов, выделение углекислого газа. 3. Система органов кровообращения – обеспечение транспорта питательных веществ в клетку и освобождение её от продуктов жизнедеятельности. 4. Система органов кроветворения – обеспечение постоянства состава крови. 5. Система органов пищеварения – потребление, переработка, усвоение питательных веществ, выделение продуктов жизнедеятельности. 6. Система органов мочевыделения и кожа – выделение продуктов жизнедеятельности, очистка организма. 7. Репродуктивная система – воспроизводство организма. 8. Эндокринная система – регуляция биоритма жизни, основных процессов обмена веществ и поддержание постоянства внутренней среды. 9. Костно-мышечная система – обеспечение структурности, функций передвижения. 10. Лимфатическая система – осуществление очищения организма и обезвреживание чужеродных агентов. 11. Иммунная система – обеспечение защиты организма от вредных и чужеродных факторов. 12. Периферическая нервная система – обеспечение протекания процессов возбуждения и торможения, проведение команд ЦНС до рабочих органов. Единство и взаимопроникновение Основы понимания гармонии жизнедеятельности, саморегуляции в организме, как в частице природы, пришли к нам из древнекитайской концепции здоровья, согласно которой в природе всё полярно. Эта теория была подтверждена всем дальнейшим развитием человеческой мысли: • магнит имеет два полюса; • элементарные частицы могут быть заряжены либо положительно, либо отрицательно; • в природе - это тепло и холод, свет и тьма; • в биологии - мужской и женский организм; • в философии - добро и зло, истина и ложь; • в географии это - север и юг, горы и впадины; • в математике - положительное и отрицательное значения; • в восточной медицине - это закон инь и ян энергий. Философы нашего времени назвали это законом единства и взаимопроникновения противоположностей. Всё в мире подчиняется закону "в природе всё уравновешено, стремится к норме, к гармонии". Так и в организме человека. Обязательным условием нормального функционирования каждой из систем организма (если рассматривать их в отдельности) является обеспечение благоприятных (оптимальных) условий. Так, если у человека в силу обстоятельств нарушена работа какой-то одной системы, способствовать нормализации её функционирования можно только в случае создания оптимальных условий. Функции систем заложены природой, как саморегулирующиеся. Ничто не может до бесконечности повышаться или понижаться. Всё обязательно должно приходить к среднему значению. Как же мы можем воздействовать на организм человека, на функции его систем? Во многом условия оптимального функционирования систем совпадают, но по некоторым позициям они индивидуальны и присущи определённой системе. От работы каждой системы зависит работа остальных систем и организма в целом. В жизни не бывает важных и второстепенных функций. Все виды деятельности важны одинаково. Но в определённых условиях важность отдельной функции может резко повышаться. Например, в условиях эпидемии на первое место выходит функция иммунной защиты и, если человек вовремя укрепит свой иммунитет, это позволит ему избежать болезни. А для хорошей адаптации человек должен чётко представлять себе функции систем и владеть методами самоуправления ими. Это значит, в нужный момент повысить необходимую функцию. Человек в идеальных условиях, при оптимальном режиме работы всех двенадцати систем, а также при наличии оптимального сенсорного, интеллектуального и духовного пространства, был бы здоровым и долго жил. Нам необходимо выделить приоритетные направления воздействия на организм, которые зависят от условий прожива¬ния, характера труда, уровня психо-эмоциональных нагрузок, наследственности, характера питания и т.д. Качество работы системы напрямую зависит от условий, в которых она находится. Индивидуальные условия формируют и особенности оптимального функционирования. Каждый человек должен иметь программу оптимальной жизнедеятельности с учётом индивидуальных особенностей существования. Только в этом случае он может создать себе условия для долгой и счастливой жизни. По материалам книги "Системный каталог натуральных продуктов Coral Club International и Royal Body Care", автор О.А. Бутакова http://www.vitadens.ru/obschemedicin...cheloveka.html http://www.vitadens.ru/obschemedicin...-chast-ii.html
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС! ЗАВТРА может быть ПОЗДНО! |
19.02.2013, 19:32 | #2 |
Senior Member
МегаБолтун
|
http://ru.wikipedia.org/wiki/%CD%EE%...EE%E2%E5%EA%E0
Нормальная (систематическая) анатомия человека — раздел анатомии человека, изучающий строение «нормального», то есть здорового тела человека по системам органов, органам и тканям. Орган — часть тела определённой формы и конструкции, имеющая определённую локализацию в организме и выполняющая определённую функцию (функции). Каждый орган образован определёнными тканями, имеющими характерный клеточный состав. Органы, которые объединены функционально, составляют систему органов[1]. В русской анатомической школе системой органов принято считать функционально единую группу органов, которые имеют анатомическое и эмбриологическое родство; группы органов, объединённых только функционально, называются аппаратами органов (опорно-двигательный, речевой, эндокринный и т. д.)[2]. Тем не менее, часто наблюдается терминологическая подмена «аппарата органов» на «систему органов». Некоторые органы выполняют несколько функций и относятся к разным системам: так, вилочковая железа (тимус) является функциональным звеном как иммунной, так и эндокринной системы, поджелудочная железа — эндокринной и пищеварительной, мужская уретра — мочевыделительной и репродуктивной и т. д. Системы и аппараты органов формируют целостный организм человека. Постоянство внутренней среды (гомеостаз) поддерживается посредством нейрогуморальной регуляции обменных процессов в организме, обеспечиваемой содружественным функционированием нервной, эндокринной и сердечно-сосудистой систем. Разделами нормальной (систематической) анатомии человека являются: остеология — учение о костях, синдесмология — учение о соединениях частей скелета, миология — учение о мышцах, спланхнология — учение о внутренних органах пищеварительной, дыхательной и мочеполовой систем, ангиология — учение о кровеносной и лимфатической системах, анатомия нервной системы (неврология) — учение о центральной и периферической нервной системах, эстезиология — учение об органах чувств.[3] Содержание
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС! ЗАВТРА может быть ПОЗДНО! |
19.02.2013, 19:33 | #3 |
Senior Member
МегаБолтун
|
Опорно-двигательный аппарат
Основная статья: Опорно-двигательная система Мышцы туловища и конечностей, спереди Мышцы туловища и конечностей, сзади Опорно-двигательный аппарат является предметом изучения трёх разделов анатомии человека — остеологии, синдесмологии и миологии. Опорно-двигательный аппарат включает костный скелет, укреплённый вспомогательными элементами (связками, суставными дисками, менисками и др.), а также мышцы. Скелет — это пассивная часть опорно-двигательного аппарата. Скелет у взрослого человека состоит в основном из костей. В местах, где требуются упругость и гибкость, сохраняются хрящи: хрящи участвуют в формировании хрящевых соединений костей (синхондрозов), полусуставов (симфизов) и суставов. Особняком стоит относящийся к дыхательной системе скелет гортани и трахеобронхиального дерева, который полностью сформирован хрящами. Кости скелета принимают участие в обмене веществ, являясь хранилищем различных микро- и макроэлементов. Кроме того, кости содержат костный мозг, центральный орган кроветворения. По анатомическим областям принято разделение скелета человека на кости черепа, позвоночник, грудную клетку и кости плечевого пояса, таз, кости свободных верхней и нижней конечностей. В состав опорно-двигательной системы входят поперечно-полосатые мышцы (скелетные мышцы). Мышцы — это активная часть опорно-двигательного аппарата. Большинство мышц крепятся к костям скелета двумя концами с помощью сухожилий. Мышечная система человека включает мышцы туловища, шеи, головы, верхних и нижних конечностей. Если пропорции и телосложение определяются в основном костной системой, то контуры фигуры человека в первую очередь зависят от мышц. Сердечно-сосудистая система Основная статья: Сердечно-сосудистая система Сердечно-сосудистая система обеспечивает постоянную циркуляцию крови по замкнутой системе сосудов — двум кругам кровообращения, начинающимся и оканчивающимся в сердце. Кровь переносит к клеткам организма субстраты, которые требуются для их нормального функционирования, и эвакуирует продукты их жизнедеятельности. Эти вещества выходят через капилляры в интерстициальную (межклеточную) жидкость . Лимфатическая система Основная статья: Лимфатическая система Лимфатическая система — это дополнительная дренажная система, в которую возвращается жидкость из тканей и в виде лимфы оттекает в кровеносное русло — в его венозную часть. В состав лимфатической системы входят лимфатические сосуды (в том числе слепо замкнутые на конце лимфатические капилляры), а также расположенные по ходу лимфатических сосудов лимфатические узлы. Нервная система Основная статья: Нервная система Схема нервной системы человека Нервная система человека отвечает за регуляцию деятельности органов и систем, обеспечивая их функциональное единство, осуществляет высшую нервную деятельность, а также участвует во взаимосвязи организма с внешней средой. Нервная система состоит из центральной части — головного и спинного мозга (центральная нервная система), а также периферической, образованной нервами, нервными корешками, нервными сплетениями, ганглиями и нервными окончаниями (периферическая нервная система). Головной мозг располагается в полости черепа, от него отходят черепные нервы. Ствол головного мозга продолжается спинным мозгом, расположенным в позвоночном канале, из которого через межпозвоночные отверстия выходят спинномозговые нервы. Также нервная система разделяется на соматическую (обеспечивающую иннервацию органов опорно-двигательного аппарата и кожи) и вегетативную (обеспечивающую иннервацию внутренних органов). Сенсорная система Основная статья: Сенсорная система Структуры сенсорной системы воспринимают разного рода раздражения и преобразуют их в нервные импульсы. Элементами сенсорной системы являются клетки-рецепторы. Сенсорная система тесно связана с нервной; большинство рецепторов (например, фоторецепторы, обонятельные, болевые и др.) представляют собой нейроны. Многие типы рецепторов вместе со вспомогательными структурами образуют органы чувств — глаза (органы зрения), уши (орган слуха) и др. Внутренние органы К внутренним обычно относят органы, образующие пищеварительную, дыхательную и мочеполовую системы. Большинство этих органов расположены во внутренних полостях тела, однако некоторые их части могут располагаться и вне их. В анатомии принято рассматривать сердце и селезёнку как части сердечно-сосудистой и иммунной систем, соответственно, хотя формально они принадлежат к внутренним органам. Внутренние органы (кроме половых) обслуживают процесс обмена веществ в организме. В разделе анатомии, посвященном внутренним органам, принято также рассматривать органы эндокринной системы, регулирующие функции всех органов и систем организма.
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС! ЗАВТРА может быть ПОЗДНО! |
19.02.2013, 19:33 | #4 |
Senior Member
МегаБолтун
|
Дыхательная система
Основная статья: Дыхательная система человека Схема дыхательной системы человека Основная функция дыхательной системы — обеспечение газообмена: доставка из окружающей среды кислорода и удаление образующегося в процессе окисления углекислого газа. Дыхательная система также принимает непосредственное участие в образовании звуков речи. Дыхательная система человека состоит из дыхательных путей и дыхательных органов — лёгких. Дыхательные пути представляют собой полые трубки, имеющие разную форму и величину просвета. Изнутри (со стороны просвета) дыхательные пути выстланы слизистой оболочкой с мерцательным (реснитчатым) эпителием. Главной функцией дыхательных путей является воздухопроводящая (обеспечение связи лёгких с окружающей атмосферой). За счёт наличия в слизистой оболочке дыхательных путей большого количества кровеносных сосудов и желёз, выделяющих слизь, проходящий через них воздух согревается и несколько очищается перед попаданием в лёгкие, этим обеспечивается их защитная функция. Дыхательные пути делятся на верхний и нижний отделы. К верхним дыхательным путям относят полость носа, носовую и ротовую части глотки. К нижним дыхательным путям относят гортань, трахею и бронхи. Органами дыхательной системы, осуществляющими газообмен между внутренней средой человеческого организма и окружающей средой, являются лёгкие. Пищеварительная система человека Основная статья: Пищеварительная система человека Пищеварительная система обеспечивает механическую и химическую обработку пищи, всасывание её компонентов, и удаление непереваренных остатков. Мочевыделительная система Основная статья: Мочевыделительная система Схема мочевыделительной системы. 1 — почки, 2 — мочеточники, 3 — мочевой пузырь, 4 — уретра. Мочевыделительная система обеспечивает вывод из организма конечных продуктов азотистого обмена, чужеродных и токсических соединений, избытка органических и неорганических веществ. Мочевыделительная система участвует в обмене углеводов и белков, в образовании биологически активных веществ, регулирующих уровень артериального давления, скорость секреции альдостерона надпочечниками и скорость образования эритроцитов. Мочевыделительная система участвует в поддержании гомеостаза, регулируя водно-солевой обмен. Репродуктивная система Основная статья: Репродуктивная система человека Органы репродуктивной системы выполняют функцию размножения человека. Половые железы — семенники и яичники — также являются эндокринными органами и вырабатывают гормоны, регулирующие работу как самой репродуктивной системы, так и других систем органов. У человека и других позвоночных в развитии, а отчасти и в ходе функционирования половая система тесно связана с мочевыделительной, поэтому иногда эти две системы описывают совместно под названием мочеполового аппарата. Эндокринная система Основная статья: Эндокринная система Эндокринные железы человека: 1 — эпифиз, 2 — гипофиз, 3 — щитовидная железа, 4 — тимус, 5 — надпочечники, 6 — поджелудочная железа, 7 — яичники, 8 — яички Эндокринная система — система регуляции деятельности внутренних органов посредством гормонов, выделяемых эндокринными клетками непосредственно в кровь, либо диффундирующих через межклеточное пространство в соседние клетки. Эндокринная система делится на гландулярную эндокринную систему (или гландулярный аппарат), в котором эндокринные клетки собраны вместе и формируют железу внутренней секреции, и диффузную эндокринную систему. Железа внутренней секреции производит гландулярные гормоны, к которым относятся все стероидные гормоны, гормоны щитовидной железы и многие пептидные гормоны. Диффузная эндокринная система представлена рассеянными по всему организму эндокринными клетками, продуцирующими гормоны, называемые агландулярными. Помимо регуляции деятельности внутренних органов, эндокринная система участвует в обеспечении гомеостаза организма, регуляции роста, развития и половой дифференцировки, психической деятельности и эмоциональных реакций. Покровная система Основная статья: Покровная система Покровная система — наружный слой человеческого тела, образованный кожей и её производными (волосами, потовыми, молочными и сальными железами, ногтями). Кожа образована двумя слоями — эпидермисом и дермой. Эпидермис представлен многослойным плоским ороговевающим эпителием. Дерма — соединительнотканная часть кожи, залегающая под эпидермисом и содержащая гладкие мышцы, кровеносные сосуды и нервные окончания. Кожа выполняет защитную функцию, участвует в восприятии раздражений из окружающей среды, в терморегуляции и выделении продуктов обмена веществ. Органы кроветворения и иммунной системы Основные статьи: Гемопоэз, Иммунная система Органы кроветворения (гемопоэза) и иммунной системы тесно связаны общностью развития, морфологии и функций. После рождения кроветворным органом у человека является красный костный мозг, в котором развиваются эритроциты, гранулоциты, тромбоциты, моноциты и клетки иммунной системы — B-лимфоциты. К органам иммунной системы (лимфоидным органам) помимо костного мозга относятся: тимус (орган созревания и дифференцировки T-лимфоцитов), скопления лимфоидной ткани в стенках полых органов пищеваритальной, дыхательной и мочеполовой систем, селезёнка, лимфатические узлы. Костный мозг и тимус относятся к центральным органам иммунной системы, остальные — к периферическим.
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС! ЗАВТРА может быть ПОЗДНО! |
19.02.2013, 19:36 | #5 |
Senior Member
МегаБолтун
|
http://zerkalov.org.ua/node/3481
http://gureev.nnov.ru/health/stroeni...loveka?start=2 ОБЩИЕ СВЕДЕНИЯ О СИСТЕМАХ Обязательным условием нормального функционирования каждой из систем организма (если рассматривать их в отдельности) является обеспечение благоприятных (оптимальных) условий. Функции систем заложены природой, как саморегулирующиеся. Во многом условия оптимального функционирования систем совпадают, но по некоторым позициям они индивидуальны и присущи определенной системе. От работы каждой системы зависит работа остальных систем и организма в целом. В жизни не бывает важных и второстепенных функций. Все виды деятельности важны одинаково. Но в определенных условиях важность отдельной функции может резко повышаться. Например, в условиях эпидемии на первое место выходит функция иммунной защиты и, если человек вовремя укрепит свой иммунитет, это позволит ему избежать болезни. Для хорошей адаптации человек должен четко представлять себе функции систем и владеть методами самоуправления ими. Это значит, в нужный момент повысить необходимую функцию. Человек в идеальных условиях, при оптимальном режиме работы всех двенадцати систем физического мира, а также при наличии оптимального сенсорного, интеллектуального и духовного пространства, жил бы долго и не болел. Но к этому можно только стремиться. Значит, на нашем уровне жизни мы должны выделить приоритетные направления воздействия на организм. Это зависит от условий проживания, характера труда, уровня психо-эмоциональных нагрузок, наследственности, характера питания и т.д. (12 причин заболеваний). Каждый человек должен иметь программу оптимальной жизнедеятельности с учетом индивидуальных особенностей существования. Только в этом случае он может создать себе условия для долгой и счастливой жизни. Качество работы системы напрямую зависит от условий, в которых она находится. Индивидуальные условия формируют и особенности оптимального функционирования. Немногие знают, например, оптимальные условия работы системы органов пищеварения или иммунной системы. Часто все оздоровительные мероприятия рассматриваются с точки зрения определенной методики лечения (например, голодания) или продукта (йод, синяя глина и т.д.), не учитывая условия работы систем организма. Каждый, кто интересуется подобными методиками, должен найти у себя заболевание, при котором данная методика или препарат были бы полезны. Гораздо правильнее исходить из состояния собственного здоровья и обеспечить оптимальные условия существования и работы наиболее ослабленным системам организма. Одним из наиболее важных условий оптимального функционирования является достаточное поступление в организм жизненно важных ингредиентов. 1. Центральная нервная система Центральная нервная система в организме человека выполняет интегрирующую функцию. Она обеспечивает оптимальный режим жизнедеятельности человека. Центральная нервная система состоит из головного и спинного мозга. Важнейшими функциями мозга являются регуляция деятельности внутренних органов, координация всех физиологических и биохимических процессов, протекающих в нашем теле, и адаптация организма к внешней среде. Раздражения, поступающие из внешнего мира (звуковые, световые, тактильные, вкусовые и прочие) воспринимаются специальными нервными окончаниями. Рецепторы - это "окна" нервной системы. Они служат посредниками между внешней средой и мозгом. Расположены рецепторы во всех частях тела, внутри каждого органа. Сигналы из внешнего и внутреннего мира разнообразны по своей природе - они могут быть механическими, химическими и прочими. Эти сигналы преобразуются в рецепторах в нервные импульсы и по чувствительным нервам передаются в спинной и головной мозг. Таким образом, мозг постоянно получает обширную информацию об изменениях в окружающем мире и о состоянии самого организма. Эта информация подвергается сложнейшей переработке и также в виде нервных импульсов передается в исполнительные органы, регулируя физиологические процессы, биохимические реакции и мышечную деятельность. К центральной нервной системе относятся и органы чувств. Это одна из самых сложных и уникальных систем, которая еще недостаточно изучена. Она обеспечивает всю духовную, интеллектуальную и сенсорную жизнь человека. Метаболизм нервной клетки огромен. Ее присутствие повсеместно. Каждый миллиметр тела находится под контролем. Каждое нервное волокно заключено в миелиновую оболочку. Липопротеидные мембраны, составляющие ее основу, отвечают за непроницаемость оболочки и обеспечивают проводимость нервного импульса. Миелиновая оболочка уникальна - это защита электрических потоков, гарантия отсутствия утечки, регулятор скорости проведения импульса. Число мозговых клеток, расположенных в коре человеческого мозга, колеблется в пределах 13-14 млрд. Длина капилляров мозга равняется 110 км. Общее количество спинномозговой жидкости от 130 до 200 мл. Мозг и мозжечок (без мозговых оболочек) содержит 82-90% воды. Оптимальные условия работы: 1. Обеспечение экологической безопасности и защита: • Определенная необходимая и достаточная эндоэкологическая чистота: отсутствие токсических ядов, солей тяжелых металлов, радионуклидов, нитратов, нитритов, пестицидов (имеют свойство накапливаться в тканях нервной системы). • Дозированная в разумных пределах солнечная радиация (жесткие ультрафиолетовые лучи, проникая через зрачок на сетчатку глаза, оказывают разрушающее воздействие на нервную систему). • Отсутствие алкоголя, наркотиков (разрушающее действие крепких алкогольных напитков и наркотиков истощает нервную систему в очень короткие сроки). 2. Полноценное питание: • витамины: группы В: В5 (антистрессовый витамин), В6 (необходим для синтеза нуклеиновых кислот), В2 (предотвращает повреждение нервной ткани, участвует в продукции ацетилхолина); С, Р, РР, ниацин, никотиновая кислота, липотропные и антисклеротические витамины холин (участвует в передаче нервного импульса), инозит, витамины Е, В12, фолиевая кислота, провитамин А, лецитин (необходимы для нормального метаболизма нервных клеток), биотин (необходим для нормального функционирования нервной ткани); • минералы (макро- и микроэлементы): медь, йод, магний, селен, калий, натрий, цинк; • аминокислоты: глицин, метионин, аспарагин (препятствует чрезмерному возбуждению и излишнему торможению), гамма-аминомасляная кислота (нейромедиатор, предотвращает перевозбуждение клеток, снимает напряжение), глютаминовая кислота (нейромедиатор, является источником энергии для нервных клеток, обезвреживает аммиак, отнимая атомы азота в процессе образования глютамина. Этот процесс - единственный способ обезвреживания аммиака в головном мозге), гистидин (входит в состав миелиновых оболочек), фенилаланин (управляет процессом памяти и настроением), триптофан (используется для синтеза нейромедиатора - серотонина); • эссенциальные фосфолипиды (участвуют в образовании клеточных мембран). 3. Прочие условия: • Отсутствие хронического стресса, чрезмерного физического и психического напряжения. Либо своевременные меры по снижению нагрузок (полноценный сон, отдых). • Определенный уровень сенсорного, интеллектуального, духовного здоровья (разумные религиозные и обрядовые увлечения). • Своевременный смех и слезы, как защитная реакция (регуляция гормонального фона. Гормон стресса, адреналин, удаляется из организма со слезами. При смехе в организме повышается выработка гормонов удовольствия - эндорфинов, положительно влияющих на состояние нервной системы). • Нервная система нуждается в своевременных психологических разгрузках (эту процедуру можно рассматривать с точки зрения корректировки энергетического дисбаланса). 2. Система органов дыхания Благодаря дыханию, организм получает кислород и освобождается от излишков углекислоты, образующейся в результате обмена веществ. Дыхание и кровообращение обеспечивают все органы и ткани нашего тела необходимой для жизни энергией. Освобождение энергии происходит на уровне клеток и тканей в результате биологического окисления. Дыхательный процесс включает несколько этапов: наполнение легких атмосферным воздухом, переход кислорода из легочных альвеол в кровь, выделение из крови в альвеолы, а затем в атмосферу углекислоты, доставка кислорода кровью к клеткам и тканям, доставка кровью углекислоты из тканей к легким, потребление кислорода клетками - клеточное дыхание. Система органов дыхания включает в себя верхние дыхательные пути (полость носа, придаточные пазухи, гортань, трахею) и легкие (бронхи и легочную ткань). Это одна из выделительных систем организма. Одновременно она является системой первого контакта. Процесс дыхания обеспечивается ритмичными движениями диафрагмы. В норме она делает 18 движений. Она поднимается вверх на 2 см и настолько же опускается вниз. В час она делает 1000 движений, за сутки - 24000. Число дыхательных движений - 18 в минуту. Они соответствуют 72 сердечным сокращениям. Необходим 1 вдох и выдох для 4 систол сердца, 18 вдохов и выдохов для 72 систол. Для обеспечения организма кислородом надо вдыхать и выдыхать 11000 л чистого воздуха. Из них около 360 л кислорода в сутки. Количество легочных альвеол равно от 300 до 400 млн., их поверхность составляет 50 кв. м при выдохе и 130-150 кв.м при вдохе. В больших городах только 50% необходимого количества кислорода поступает в легкие. Возникает хроническая кислородная недостаточность всех органов. Сотни тонн пыли, находящейся во вдыхаемом воздухе оседают на клетках легочных альвеол, и легкие изо всех сил пытаются выбросить все это назад. Легким надо регулярно помогать. Когда человек дышит, большую часть работы выполняет диафрагма, состоящая из мышц и фиброзной ткани. Она образует сплошную стенку между грудной клеткой и брюшной полостью. При вдохе мышечные волокна диафрагмы сокращаются, сдвигая центральную часть купола к брюшной полости. Это увеличивает объем легких. Выдох происходит путем простого расслабления мышц. Кроме этого диафрагма регулирует деятельность печени за счет изменения давления в брюшной полости. Это является чрезвычайно важным фактором качественной работы желчевыводящей системы. Мужчины, в отличие от женщин, приспособлены к брюшному типу дыхания. Диафрагма активно массирует органы брюшной полости. За счет этого мужчины практически никогда не страдают запорами. Женщины дышат, в основном, грудью. У них чаще встречаются нарушения функции желудочно-кишечного тракта, но они реже страдают заболеваниями легких. Оптимальные условия работы 1. Обеспечение экологической безопасности и защита: • Достаточная чистота воздуха (отсутствие токсических газов, пыли, дыма). • Необходимое количество кислорода во вдыхаемом воздухе. 2. Полноценное питание: • витамины: А, С, Р, бета-каротин (укрепляют стенки сосудов); • микро- и макроэлементы кальций, йод, магний; • аминокислоты: цистеин (способствует разрушению слизи в дыхательных путях), лизин (входит в состав антител, обладающих противовирусным действием), гистидин (необходим для синтеза гистамина - важного компонента многих иммунологических реакций), аспартовая кислота (стимулирует иммунитет за счет повышения продукции иммуноглобулинов и антител). 3. Прочие условия: • Полноценный состав полезной микрофлоры кишечника (лакто- и бифидумбактерий), как один из факторов хорошего пищеварения (хорошее пищеварение обеспечивает достаточную чистоту крови, что облегчает работу легких, как выделительной системы). • Отсутствие сколиоза позвоночника (нарушения в области реберно-позвоночных сочленений изменяет физиологию дыхательного процесса и способствует формированию деформированной грудной клетки). • Достаточное развитие дыхательной мускулатуры (достигается путем тренировок, необходимо для обеспечения процесса правильного дыхания). • Санация очагов хронической инфекции (гайморит, кариес, хронический тонзиллит). • Качественная работа лимфатической системы (как одной из дренажных систем, вымывающей микрочастицы пыли, вирусы, бактерии из легких). • Качественная работа иммунной системы защиты (распознавание вирусов, бактерий). • Достаточная бактерицидность защитной слизи воздушно-дыхательных путей (слизь разрушается горячим дымом от сигарет, токсическими газами и т.д.). Важна гигиена полости носоглотки, особенно у курящих. • Своевременное лечение ОРВИ.
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС! ЗАВТРА может быть ПОЗДНО! |
19.02.2013, 19:36 | #6 |
Senior Member
МегаБолтун
|
3. Система органов кровообращения
Система органов кровообращения выполняет в организме очень важную функцию - обеспечивает транспорт энергетических и питательных веществ в клетку и освобождает ее от отходов жизнедеятельности. Она включает сердце, систему артериальных и венозных сосудов, капилляры. Сосуды человека, как транспортные магистрали. Движение в них не прекращается ни на секунду. Остановка кровообращения - это смерть для клетки. От слаженной работы системы органов кровообращения зависит работа всех систем. По артериям кровь, обогащенная кислородом, направляется в клетки. По венам кровь с углекислотой от клетки поступает в легкие. В течение минуты здоровое сердце выбрасывает в аорту 6л крови, за 1 час - 420л, за 24 часа - 10000л. Этот подсчет дает возможность представить себе сердечную нагрузку. Непосредственно к клетке подходят мельчайшие кровеносные сосуды - капилляры. Кровь в них осуществляет свои основные функции: отдает тканям кислород, питательные вещества, гормоны и уносит углекислый газ и другие продукты обмена, подлежащие выделению. Благодаря происходящему в капиллярах обмену веществ поддерживается постоянство физико-химических свойств тканевой жидкости, омывающей клетки и, следовательно, постоянство условий их жизнедеятельности. Капилляры - это конечные разветвления артериальной системы и одновременно начало венозной. Жизнь клетки напрямую зависит от качества капиллярного кровообращения. Поверхность клеток всех кровеносных капилляров у взрослого человека - 7300м2. Общее количество крови и лимфы - 7,3л. Каждая сердечная систола здорового человека выбрасывает в поток крови от 80 до 100мл. Общее количество крови 5л. Общее количество циркулирующей жидкости - 28л. Сердце на 71% состоит из воды. Общая длина капилляров у взрослого человека достигает 100 тысяч км. Диаметр капилляров варьирует между 6 и 30мкм. Давление крови в капиллярах колеблется от 10 до 20мм рт ст. При гиперемии давление поднимается до 40мм. Не все капилляры постоянно открыты. При покое органов функционирует примерно их десятая часть - "дежурные капилляры". В отличие от артерий и вен капилляры могут вновь образовываться и исчезать. Ни одно заболевание не обходится без вовлечения в патологический процесс капиллярного русла. Любое психическое и физическое напряжение сопровождается усилением капиллярного кровотока. Именно с помощью микроциркуляторных реакций осуществляются процессы адаптации организма к изменениям внутренней и внешней среды. Оптимальные условия работы 1. Обеспечение экологической безопасности и защита: Определенная эндоэкологическая чистота организма: отсутствие токсических ядов, радионуклидов и других физических и химических вредностей. 2. Полноценное питание: • витамины: ниацин (никотиновая кислота В3 - необходим для нормального кровообращения), В6 (подавляет формирование гомоцистеина - токсического вещества, которое оказывает отравляющее воздействие на миокард и способствует отложению холестерина в сердечной мышце), В2, рутин, витамин С, биотин (необходим для нормальной функции костного мозга), инозитол (способствует понижению уровня холестерина, предотвращает потерю эластичности стенками артерий, участвует в процессе образования лецитина, а также в метаболизме жиров и холестерина); • минералы (макро- и микроэлементы): калий, магний (уменьшает негативное влияние на эндотелий сосудов, обусловленное колебанием артериального давления, способствует снижению уровня холестерина в крови), селен, цинк, германий (укрепляет стенки сосудов); • аминокислоты: лизин (понижает уровень триглицеридов в сыворотке крови), метионин (помогает переработке жиров, предотвращая их отложение в печени и стенках артерий), пролин (укрепляет сердечную мышцу), таурин (в высокой концентрации содержится в сердечной мышце, поддерживая нормальный уровень холестерина, необходим для нормального обмена натрия, калия, магния и кальция, предотвращает вымывание калия из сердечной мышцы). 3. Прочие условия: • Нормальная вязкость и жирность крови (согласно возрасту). • Нормальный уровень холестерина и триглицеридов в крови. • Отсутствие хронических бактериальных, вирусных и грибковых инфекций (наличие инфекций значительно ухудшает работу сердечной мышцы, способствует повреждению стенок сосудов с дальнейшим отложением холестериновых бляшек. По последним данным американских исследований, в состав холестериновой бляшки входят живые бактерии типа хламидий. Они и являются пусковым моментом повреждения сосудистой стенки). • Хорошее состояние позвоночника, особенно шейного отдела (наличие фактора ущемления позвоночных артерий и вен приводит к значительному нарушению мозгового кровообращения). • Качественная работа печени (от работы печени зависит уровень холестерина и липопротеидов в крови). • Хорошее состояние сосудистой стенки (здоровье клапанного аппарата обеспечивает нормальную гемодинамику кровообращения, особенно в сосудах нижних конечностей). • Отсутствие гиподинамии (приводящей к застойным процессам в системе кровоснабжения нижних конечностей и сосудах малого таза). 4. Система органов кроветворения Кроветворная система отвечает в организме за функцию обеспечения постоянного состава крови. Она включает костный мозг, селезенку, лимфатические железы. Кровь имеет очень важное значение для функционирования организма. Она переносит кислород и другие важные вещества к тканям и клеткам, а взамен выводит углекислоту и другие отработанные продукты. Кровь состоит из бесцветной жидкости, называемой плазмой, в которой находятся эритроциты, лейкоциты, тромбоциты и лимфоциты. Плазма содержит огромное количество химических веществ, необходимых для жизни организма: белки, углеводы, жиры, минеральные соли, ферменты, гормоны, витамины и др. Важной составной частью плазмы являются белки: альбумины и глобулины. Альбумины удерживают воду, не позволяя крови превратиться в желе. Глобулины выступают в роли антител при попадании инфекции. Эритроциты - безъядерные клетки крови животных и человека. Они содержат гемоглобин, который легко соединяется с кислородом. В капиллярах гемоглобин отдает кислород тканям (выделяет в межклеточную жидкость) и присоединяет к себе углекислый газ. После гибели эритроцит распадается на белковую часть - глобин и красящее вещество - гем. От молекулы гема отсоединяется желчный пигмент - билирубин, который выводится из организма. Остатки эритроцита с током крови переносятся в костный мозг и используются для образования новых эритроцитов. Это происходит в костном мозгу грудины, ребер, позвонков, в диафизах трубчатых костей, в лимфатических железах и селезенке. Масса костного мозга составляет 2 кг. Он ежедневно производит 300 млрд. эритроцитов. Каждые 2 месяца общее количество эритроцитов обновляется. Жизнь 1 эритроцита длится от 42 до 127 дней. Ежедневно умирает более 200 млрд. эритроцитов, 2 млн. почечных нефронов обеспечивает выведение остатков эритроцитов. При анемии умирает до 300-500 млрд эритроцитов и проблема их эвакуации встает очень остро. Лейкоциты - белые кровяные клетки. Они защищают организм от различных чужеродных частиц и болезнетворных микробов. Лейкоциты чувствительны к веществам, выделяемым бактериями. В очагах повреждения погибшие лейкоциты скапливаются в виде гноя. Лимфоциты играют жизненно важную роль в организме, обеспечивая ему естественный иммунитет к заболеваниям. Лимфоциты вырабатывают антитоксины и антитела, которые не позволяют клеткам организма погибнуть от натиска бактерий. Тромбоциты. Основная функция этих клеток - создание сгустков крови, необходимых для остановки кровотечения. При повреждении сосудистой стенки тромбоциты мгновенно разрушаются, образуя сгусток белка - фибрина, который закупоривает сосуд. Адреналин ускоряет свертываемость крови. С этим связана опасность тромбозов при хронических стрессах. Оптимальные условия работы 1. Обеспечение экологической безопасности и защита: Отсутствие токсических ядов, радионуклидов, солей тяжелых металлов (экотоксические яды и соли тяжелых металлов имеют свойство накапливаться в костях, поражая при этом костный мозг). 2. Полноценное питание: • витамины: В12 (участвует в процессе формирования эритроцитов и облегчает утилизацию железа), В1 (тиамин - участвует в процессе образования клеток крови), В2 (рибофлавин - необходим для формирования эритроцитов), В5 (пантотеновая кислота - предотвращает развитие анемии), В6 (участвует в процессе формирования эритроцитов), Е (нормализует свертываемость крови), К (необходим для образования протромбина, который требуется для процессов свертывания крови), С, фолиевая кислота (необходима для формирования эритроцитов), витамин D (участвует в процессе нормализации свертывания крови); • минералы (макро- и микроэлементы): кальций, железо, селен, медь (принимает участие в образовании гемоглобина и эритроцитов), сера (входит в состав гемоглобина); • аминокислоты: гистидин (необходим для образования эритроцитов и лейкоцитов), изолейцин (одна из незаменимых аминокислот, необходимых для синтеза гемоглобина), лизин (дефицит лизина при водит к анемии). • Обеспечение нормальных условий для всасывания железа. Для этого необходимо наличие следующих микроэлементов: марганеца, молибдена, магния, а также витаминов А, В, С и соляной кислоты в желудке. 3. Прочие условия: • Своевременное лечение хронических заболеваний желудочно-кишечного тракта (гастрита с пониженной секрецией). Достаточная концентрация соляной кислоты в желудке необходима для всасывания железа). • Отсутствие дефицита витамина В12. • Регуляция месячных физиологических кровотечений у женщин (большие кровопотери способствуют истощению резерва крови). • Отсутствие хронических инфекций, поражающих селезенку и костный мозг.
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС! ЗАВТРА может быть ПОЗДНО! |
19.02.2013, 19:37 | #7 |
Senior Member
МегаБолтун
|
5. Система органов пищеварения
Система органов пищеварения включает ряд органов, отвечающих за поступление, переработку, усвоение и выделение непереваренных продуктов. Она включает ротовую полость, пищевод, желудок, двенадцатиперстную кишку, печень, желчный пузырь, поджелудочную железу, тонкий и толстый кишечник, прямую кишку, а также слюнные железы и железы внутренней секреции. Пищеварение - сложный комплекс физико-химических процессов усвоения пищи. В нем принимают участие все органы пищеварения. Желудок обеспечивает первый этап расщепления пищи при помощи соляной кислоты. В нем перевариваются только жиры, углеводы, частично белки. Соляная кислота обеспечивает естественный противобактериальный барьер. Общее количество циркулирующей слюны – 1500 мл, желудочного сока – 2500 мл, желчи - 500-1500 мл, сока поджелудочной железы – 700 мл, кишечного сока – 3000 мл. Поверхность кишечника имеет множество ворсинок. Совокупность этих ворсинок обеспечивает превращение пищевых продуктов, состоящих из мертвой материи, в живые крупинки клеточной цитоплазмы. Длина каждой ворсинки равна 2-5 мкм, диаметр – 1 мкм. Допуская, что площадь наружной оболочки кишечника у человека исчисляется 43 кв.м, внутренняя поглощающая поверхность их со всем объемом ворсинок должна равняться 602 кв.м. Здоровый организм должен выделять в сутки 100-150 г кала. Печень производит за 24 часа от 1 до 1,5 л желчи. Желчь необходима для расщепления жиров на глицерин и жирные кислоты. В клетках кишечника молекулы глицерина и жирных кислот опять соединяются и проникают в кровь. В крови они снова распадаются, освобождая энергию. И так до углекислого газа и воды с постоянным выделением энергии. Известно приблизительно 30 биохимических функций печени и это только начало. Это уникальная биохимическая лаборатория жизни. Очистка организма происходит преимущественно ночью. Если она протекает некачественно, человек просыпается усталым. Объем крови, проходящей через печень за 1 час – 100 л (если положить грелку на 1 час на область печени, можно согреть 100 л крови). Поверхность обмена печени очень велика. Печень на 75% состоит из воды, она похожа на огромную всасывающую губку. Поджелудочная железа начинает функционировать через 1-3 минуты после начала еды. Наибольшее количество желудочного сока выделяется при приеме хлеба. Одновременно она является железой эндокринной системы, выделяющей гормон инсулин, регулирующий концентрацию сахара в крови. На секреторную деятельность поджелудочной железы оказывают влияние гормоны гипофиза, щитовидной железы, надпочечников и коры больших полушарий. В состоянии стресса резко снижается ферментативная активность поджелудочного сока. Оптимальные условия работы 1. Обеспечение экологической безопасности и защита: Отсутствие токсических примесей в воде, продуктах питания. Основной путь поступления токсических веществ - желудочно-кишечный тракт. Нитраты, нитриты и пестициды резко нарушают функцию желудочно-кишечного тракта и печени. 2. Полноценное питание: • Сбалансированность по основным группам и сочетаемость при приеме (как основное условие полноценной работы ферментных систем, один из вариантов - раздельное питание). • Достаточное количество, качество и сбалансированность микробиоценоза кишечника (наличие лакто-, бифидум- и других полезных бактерий). • Достаточное поступление клетчатки (как необходимое условие нормальной перистальтики и обеспечение проживания и жизнедеятельности бактерий). • витамины: ниацин (никотиновая кислота В3 - необходим для производства соляной кислоты, участвует в процессах секреции желчи), холин (необходим для регуляции деятельности желчного пузыря, функции печени и образования лецитина, участвует в метаболизме жиров и холестерина), витамин К (участвует в процессе пищеварения и превращения глюкозы в гликоген); • минералы (макро- и микроэлементы): кальций, магний; • аминокислоты: аргинин (дезинтоксицирует печень при помощи обезвреживания аммиака), аспарагин (участвует в процессе синтеза аминокислот в печени), глютамин (поддерживает нормальное кислотно-щелочное равновесие, необходим для синтеза РНК и ДНК), гистидин (стимулирует секрецию желудочного сока), лизин (входит в состав ферментов), метионин (способствует пищеварению, обеспечивая дезинтоксикационные процессы путем связывания токсических металлов). 3. Прочие условия: Своевременная эвакуация продуктов метаболизма через кишечник (борьба с запорами). 6. Система органов мочевыделения, включая кожу Мочевыделительная система включает в себя ряд органов: почки, мочеточники, мочевой пузырь. К ней же относится и кожа. Выделение - одна из фундаментальных функций организма. В природе существуют только три процесса: прием, переработка (с использованием энергии) и выделение. Все, что не может быть использовано организмом человека, должно быть своевременно и полностью выделено наружу. Это постоянный процесс, который не может прекратиться ни на секунду. Часто для организма процесс выделения становится более значимым, особенно во время болезни. Длина почечных капилляров – 60 км. В почечном нефроне имеется большое количество ворсинок, через которые происходит обмен между кровью и клетками почек. Общая поверхность 1 нефрона развернутых ворсинок сегмента почки равна 20 кв.мм. В двух почках взрослого человека 2 млн. нефронов. Общая поверхность обмена на ворсинках от 40 до 50 кв.м. Здоровый организм должен выделять за сутки 1,5 л мочи. Осмотическое давление в гломерулах почек – 6 атм, и тем не менее мочевина при концентрации в крови от 0,25 до 0,36 у здорового человека переходит в мочу с концентрацией, почти в 100 раз большей 20. Чудо этой концентрации представляет неразрешенную проблему для биохимиков. Для мочевины сила сцепления фантастична. Кожа. Долгое время считали, что кожа выполняет только защитную роль. современные исследования последних лет показали, что кожа - это уникальный орган с огромным количеством функций. "Кожа - зеркало кишечника". "Кто имеет хорошую кожу - имеет все" - древняя пословица. В Греции вместо "Здравствуйте" говорили дословно: "Как Вы потеете?". Наиболее значима ее функция выделения. Число потовых желез на теле человека превышает 2 млн. Количество пота, выделяемого в сутки в обычном режиме жизнедеятельности - от 600 до 900 г. Общая потовыделяющая поверхность будет около 5 кв.м. Выделяющая поверхность почек – 8 кв.м. Эти цифры сопоставимы и свидетельствуют о важной роли системы потовых желез в организме. При нормальном состоянии здоровья пот содержит около 1 г мочевины в литре. Постоянное потоотделение - это помощь для всех выделительных систем организма. Кожа способна полностью взять на себя функцию выделения, чтобы разгрузить другие выделительные системы: легкие, почки, желудочно-кишечный тракт, печень. Большинство кожных проблем и заболеваний - это выделение токсинов из организма наружу. Поэтому кожу нецелесообразно лечить отдельно, как мы в большинстве случаев поступаем. Общая поверхность кожи варьирует от 1,7 кв.м до 2,6 кв.м. Число сальных желез - 250 тысяч. Вода составляет от 70 % до 72 % химического состава кожи. Вторая не менее важная функция - это терморегуляция, она тоже частично осуществляется при помощи потовых желез. Кожа - это "гигантский периферический мозг", содержащий миллионы рецепторов: тепловых, тактильных, болевых. Оптимальные условия работы 1. Обеспечение экологической безопасности и защита: • Максимальное снижение поступления в организм токсических промышленных и бытовых ядов, радионуклидов, нитратов, паров химической продукции (ацетон, масляные краски, бензин). Наличие экологических токсинов значительно ухудшает работу почек, являющихся важным органом мочевыделительной системы. • По возможности снижение поступления алкогольных напитков (особенно плохого качества). Примеси метилового спирта в алкогольных напитках разрушают аппарат почки. 2. Полноценное питание: • витамины: С, А, Е. • минералы (макро- и микроэлементы): калий, селен, хром, магний; • Ограничение поваренной соли, острых, пряных, раздражающих веществ, кислот и уксуса. Поступление уксуса в малых дозах в течение длительного периода можно рассматривать как вариант хронического отравления. • Поступление чистой воды в достаточном количестве (от 1,5 до 2,5 литров, в зависимости от сезона). В летний сезон необходимо увеличение поступления воды. Это связано с обильным потоотделением и необходимостью дополнительной очистки организма. 3. Прочие условия: • Регулярная тренировка системы потовых желез (чередование высокотемпературных процедур (баня) с физическими нагрузками (спорт, мышечная работа). С потом происходит эвакуация гормонов, солей и клеточных ядов. • Отсутствие хронических очагов бактериальных, вирусных инфекций (хронический тонзиллит). Наличие хронической инфекции в организме практически всегда оказывает то или иное отрицательное воздействие на почки. Особенно в этом смысле опасны детские инфекции мочевыводящих путей. Наличие бета-гемолитического стрептококка в большинстве случаев вызывает риск развития ревматизма, при котором в болезненный процесс вовлекаются глубокие структуры почек. Как следствие, развиваются гломерулонефриты. Это одна из причин почечной недостаточности. • Воздействие на рефлексогенные зоны почек (стопы и т.д.). • Сохранение нормального кислотно-щелочного равновесия мочи. Преобладание в структуре питания мясных блюд, совмещенное с нарушением кислотности мочи, ведет к образованию почечных камней - уратов. Нарушение фосфорного обмена способствует выпадению в осадок фосфатов. Нарушение обмена глицирризиновых кислот способствует образованию оксалатовых камней. 7. Репродуктивная система Репродуктивная система отвечает за продолжение жизни биологического вида. Ради продолжения рода и существует жизнь вообще, иначе весь этот процесс не имел бы смысла. Самое высокое предназначение живого организма - продолжать свой вид. И природа тщательно зашифровала весь этот уникальный и непостижимый процесс. Передача генетической информации - самая большая тайна природы, которую нам еще только предстоит изучить. Человек безумно хочет контролировать этот процесс. Даст ли природа в руки человеку контроль - покажет время. Но готовы ли мы к этому шагу? Слияние двух клеток с образованием новой жизни - вот суть всех процессов, происходящих на земле. Репродуктивная система у женщин и мужчин устроена по-разному. У женщин в нее входят: матка, яичники, влагалище и придатки яичников. У мужчин: предстательная железа, яички и наружные гениталии. Работа репродуктивной системы тесно связана с гормональным обменом организма. Половые гормоны вырабатываются в яичниках у женщин и яичках у мужчин. Гормональная функция очень неустойчива. На нее оказывают влияние экологическая обстановка, психические и физические нагрузки, заболевания половых органов. Самые опасные периоды в жизни человека - это период полового созревания и период климактерического угасания. В эти периоды организм нуждается в защите и бережном отношении. Одно из непременных условий полноценного функционирования репродуктивной системы - сексуальная гармония. Человечество веками уделяло этому аспекту жизни очень большое внимание. Культура разных стран, особенно восточных, заботилась о репродуктивном здоровье нации. Традиции, бережно хранимые и передаваемые из поколения в поколение, готовили женщин к детородному периоду. Во время сексуальной революции значительно снизилась сексуальная культура молодежи, и результат не заставил себя долго ждать. Во много раз увеличилось количество заболеваний, передающихся половым путем. Более половины мужского населения страдает простатитами. Резко снизилось репродуктивное здоровье женщин. Появилось большое количество бесплодных браков. Резко увеличилась детская заболеваемость и смертность. Все это ведет к истощению генофонда народов страны. Репродуктивная система относится к наиболее ранимым системам, и поэтому создание оптимальных условий ей просто необходимо. Оптимальные условия работы 1. Обеспечение экологической безопасности и защита: • Отсутствие в организме экотоксических ядов, радионуклидов, продуктов бытовой химии (особенно опасны для организма на генетическом уровне, способны вызвать мутации в половых клетках, в результате которых может произойти гибель плода или врожденные уродства). Репродуктивная система является наиболее чувствительной к экотоксическим ядам. Радиация способна полностью подавить способность человека к выработке полноценных половых клеток. • Умеренное потребление алкоголя. Во время беременности плод является губкой, всасывающей все яды и токсины, потому что плацента не имеет собственной лимфатической системы. Даже малые дозы алкоголя, никотина могут оказать губительное действие на плод на любом этапе его развития. 2. Полноценное питание: • витамины: А, С, фолиевая кислота (участвует в синтезе РНК и ДНК в качестве коэнзима, имеет важное значение для клеточного дыхания), В3 (ниацин - участвует в синтезе половых гормонов); • минералы (макро- и микроэлементы): калий, селен, хром, магний, цинк, кальций; • аминокислоты: аргинин (содержится в семенной жидкости мужчины), глицин (необходим для нормальной работы предстательной железы), гистидин (необходим для синтеза гистамина - медиатора полового возбуждения), лизин (укрепляет репродуктивную систему, входит в состав антител, гормонов, ферментов). 3. Прочие условия: • Отсутствие хронических инфекций - заболеваний, передающихся половым путем, - вирусной, бактериальной, грибковой этиологии (хламидии, герпес, уреаплазма и др.), нарушающих процессы репродукции. • Нормальный гормональный уровень, особенно в период полового созревания. Он может быть обеспечен наличием необходимых микроэлементов (например, йод) и щадящим режимом жизнедеятельности подростка. • Необходимы в достаточном количестве: • Полноценная сексуальная жизнь (является необходимым условием качественного функционирования репродуктивной системы). Половая дисгармония ведет к частой смене половых партнеров и, как следствие, возникновению заболеваний, передающихся половым путем. • Достаточная степень сенсорного, интеллектуального, духовного здоровья. Только духовное и интеллектуальное развитие молодежи может обеспечить формирование ответственно здоровой матери и ответственно здорового отца.
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС! ЗАВТРА может быть ПОЗДНО! |
19.02.2013, 19:37 | #8 |
Senior Member
МегаБолтун
|
8. Эндокринная система
Наряду с вегетативной нервной системой имеется вторая коммуникативная система для информационного обмена между отдельными органами - эндокринная система. Она уникальна, необъятна и непостижима. Также, как и вегетативная нервная система, она регулирует и координирует функции органов. Различие между двумя системами состоит в способе и скорости передачи информации. Нервный импульс имеет преимущество в большей скорости, химический же "язык" в том, что хотя он и медленно приводится в действие, однако равномерно действует продолжительное время. Химические продукты эндокринной системы называются гормонами. Их вырабатывают клетки эндокринных желез. В организме человека вырабатывается более 50 различных гормонов. Они осуществляют надклеточный уровень регуляции. В целом функцию эндокринной системы можно определить как обеспечение биоритма жизни, основных процессов обмена веществ и поддержание постоянства внутренней среды. Миллиарды клеточных элементов не могли бы работать как единое целое, если бы в организме не существовал утонченный механизм регуляции. Поступая в кровь, гормоны эндокринных желез оказывают влияние на деятельность чувствительных к ним клеток. Надпочечники - небольшая железа, прилегающая к верхнему полюсу почек. Кора надпочечников вырабатывает несколько гормонов. Действие гормонов надпочечников направлено на выполнение закона постоянства внутренней среды. Гормоны адреналин и норадреналин регулируют деятельность вегетативной нервной системы. Гипофиз находится в головном мозге, управляет всей эндокринной системой, осуществляя интеграцию деятельности эндокринных желез. Оказывает влияние на рост, развитие, обменные процессы. Но гипофиз "слеп" в отношении внешнего мира. Гипоталамус собирает и анализирует информацию о внешнем мире, - это гибрид нервной и эндокринной систем, место стыковки двух миров: "внутреннего" и "внешнего". В гипоталамусе есть центры управления всеми органами и функциями: центр регуляции сердечной деятельности, тонуса, иммунитета, сна, эмоций, водного и солевого баланса, аппетита, центр наслаждения. Через гипофиз гипоталамус регулирует рост тела при помощи гормона роста, деятельность щитовидной железы, функцию молочных желез. Паращитовидные железы вырабатывают гормон, регулирующий обмен кальция и фосфора в организме. Поджелудочная железа вырабатывает инсулин, регулирующий уровень сахара в крови и способствующий обмену углевода в тканях. Половые железы (яичники у женщин, яички - у мужчин) продуцируют гормоны, определяющие вторичные половые признаки. Оптимальные условия работы 1. Обеспечение экологической безопасности и защита: Отсутствие токсических ядов, нитратов, консервантов, радионуклидов и других физических и химических вредностей. Эндокринная система является одной из самых чувствительных, даже к малым дозам, экотоксических ядов. 2. Полноценное питание: • витамины: С, Е, А, D (нормализует функцию щитовидной железы. Когда кожа подвергается воздействию ультрафиолетовых лучей, холестерол, находящийся в коже, трансформируется в предшественника витамина D), В5 (пантотеновая кислота - играет важную роль в выработке гормонов надпочечников); • минералы (макро- и микроэлементы): йод (входит в состав гормонов щитовидной железы), селен, цинк (входит в состав гормона инсулина), хром (способен стабилизировать уровень сахара в крови, влияя на утилизацию инсулина); • аминокислоты: аланин (способствует нормальному метаболизму глюкозы), аргинин (оказывает стимулирующее действие на выработку инсулина и в качестве компонента вазопрессина, гормона гипофиза, помогает синтезу гормона роста), изолейцин (стабилизирует и регулирует уровень сахара в крови и процессы энергообеспечения), лейцин (понижает уровень сахара в крови и стимулирует выработку гормона роста), лизин (входит в состав гормонов), тирозин (улучшает функцию надпочечников, щитовидной железы и гипофиза. Тиреоидные гормоны образуются при присоединении йода к тирозину). • Разумное, необходимое и достаточное питание по группе углеводов, белков (сладкое). При значительном переедании сладких продуктов нарушаются механизмы утилизации глюкозы, обмен веществ и, как следствие, развивается ожирение. 3. Прочие условия: • Поддержание нормального гормонального статуса у женщин во время беременности и после родов. • Контроль за гигиеной девочки-подростка, формирование ответственности матери. • Контроль за весом. 9. Костно-мышечная система Костно-мышечная система в организме отвечает за структуру тканей, процесс передвижения и выполнения работы. От состояния костно-мышечной системы зависит способность человека к активным движениям. Костная ткань - это минеральный резерв, к которому организм обращается каждый раз, когда требуется компенсировать потери кальция. Из костной ткани состоят все кости тела, хрящи, суставы и связки, соединяющие их. Мышцы на 83% состоят из воды. Деятельность скелетных и поперечно-полосатых мышц регулируется человеком сознательно. Другие регулируются без участия сознания. Они называются гладкими или непроизвольно сокращающимися (стенки мышц желчного пузыря, кишечника, маточных труб и т.д.). Общая масса мускулатуры взрослого человека определяется примерно в 24 кг. В состоянии покоя площадь капиллярного обмена в 1 кв.см мышечной массы равна 650 кв.см, во всей же мускулатуре эта поверхность достигает 3000 кв.м. При физической работе эта площадь увеличивается в 4-5 раз. Микрокристаллы кальция, составляющие твердую основу костной ткани, представляют собой в развернутом виде пространство в 130 кв.м на 1 г костной ткани. Все суставы и связки омываются внутрисуставной жидкостью. Она циркулирует по тендовагинальным пространствам и обеспечивает жизнедеятельность связкам, хрящам, суставам. От качества внутрисуставной жидкости зависит работа всей костно-мышечной системы. При всех заболеваниях суставов в первую очередь изменяется количество и качество внутрисуставной жидкости. Она мутнеет, становится более вязкой, меняется соотношение белков, появляются признаки воспаления. Судить о состоянии внутрисуставной жидкости можно по состоянию ногтей. Здоровые ногти - блестящие, твердые, прозрачные, без пятен и рифленостей. При заболеваниях суставов ногти становятся мутными, слоящимися, с поперечной или продольной исчерченностью. Скелет - это подвижная опора человека. Он состоит из 206 костей. Примерно половина из них формирует конечности: руки и ноги. Хотя каждая кость в отдельности не сгибается, весь скелет удивительно подвижен и позволяет человеку совершать множество разнообразных движений. Скелет защищает внутренние органы от повреждений. Позвоночник - один из самых важных органов костно-мышечной системы. Он служит хранилищем для спинного мозга. Позвоночник обеспечивает функцию прямостояния, к которой человек пришел в процессе эволюции. От состояния позвоночника зависит самочувствие человека. Оптимальные условия работы 1. Обеспечение экологической безопасности и защита: * Отсутствие радионуклидов, солей тяжелых металлов (костная ткань имеет свойство депонировать, накапливать радионуклиды. Скапливаясь в костной ткани, они становятся дополнительным источником облучения близлежащих органов и тканей. Особенно опасно, если рядом оказываются железы внутренней секреции). 2. Полноценное питание: • витамины: С, Е, А (участвует в формировании костей, зубов), D (необходим для абсорбции кальция и фосфора в желудочно-кишечном тракте, формирования костей, зубов и роста организма), К (необходим для формирования костей, участвует в синтезе остеокальцина - белка костной ткани, на которой кристаллизуется кальций); • минералы: кальций, фосфор, кремний (принимает участие в формировании коллагена), бор (поддерживает здоровое состояние костей, процессы метаболизма кальция, фосфора и магния), медь (участвует в процессе образования костей), магний (играет важную роль в процессе формирования костей и метаболизме минералов); • аминокислоты: аргинин (важный компонент обмена веществ в мышечной ткани), цистеин (ускоряет процесс образования мышечного волокна), глютамин (необходим в больших количествах мышцам, используется для синтеза белков клеток скелетной мускулатуры), глицин (замедляет процесс дегенерации мышечной ткани, является источником креатина, используется при синтезе РНК и ДНК), изолейцин (способствует восстановлению и увеличению мышечной массы), лейцин (защищает мышечную ткань, способствует восстановлению костей и является источником энергии), лизин (незаменимая аминокислота, входящая в состав любых белков. Необходима для нормального формирования костей в период роста, способствует усвоению кальция), пролин (увеличивает продукцию коллагена, укрепляет связки и хрящи). 3. Прочие условия: • Отсутствие лишнего веса (как фактора дополнительной нагрузки на суставы). • Отсутствие смещения тазовых костей в области крестцово-подвздошных сочленений, приводящее к сколиозу позвоночника. • Отсутствие сколиоза позвоночника. • Достаточная мышечная нагрузка (обеспечивает питание костно-мышечной системы). • Отсутствие инфекций, приводящих к развитию костно-суставной патологии (гемолитического стрептококка, уреаплазмы). • Достаточное качество суставной жидкости (обеспечивает нормальную работу суставных поверхностей и связок). 10. Лимфатическая система В целом функцию лимфатической системы можно определить как обеспечение процессов очистки организма от отходов метаболизма. Лимфатическая система - это вторая река жизни. Если длина кровеносных сосудов 100 тысяч км, то длина лимфатических вдвое больше. Лимфа омывает все клетки, заполняет все щели и промежутки в органах. Это система оттока отходов метаболизма. Еще Гиппократ говорил о "белой крови": "Лимфатическая система состоит из трех разделов: лимфатические сосуды, лимфатические органы (миндалины, селезенка, тимус, костный мозг), лимфатические полости (желудочки мозга, слезные камеры глаз, центральный канал костного мозга) и др.". Это уникальная дренажная система организма. Количество лимфатических узлов - 400. Общее количество лимфы равно 2-2,5 л. Лимфатическая система - одна из самых загадочных в организме. До сих пор точно не определены все функции лимфатической системы. В результате недостаточной работы лимфатической системы наблюдается появление отеков в разных органах. Лимфатическому оттоку из нижних конечностей способствует ходьба. Гиподинамия - первый шаг к развитию лимфатической недостаточности нижних конечностей. Движение лимфы более чем на 90 % управляется мышечными сокращениями. Вот почему так важна физическая активность человека, которая приводит к повышению эластичности мышц. Лимфатические сосуды обладают свойством расширяться больше, чем кровеносные сосуды. Они снабжены хорошо развитой гладкой мускулатурой. Все ткани и органы, орошенные кровеносными сосудами, снабжены также и лимфатическими сосудами. Единственный орган - плацента - составляет исключение. В виду отсутствия лимфатических сосудов в плаценте удаление отходов жизнедеятельности плода создает значительную перегрузку венозной системе матери. Это является одной из причин развития флебитов у женщин во время беременности. В норме поток лимфы движется в одну сторону (от периферии к центру). Когда лимфатические узлы поражены туберкулезом, раком, препятствия, возникающие по ходу лимфы, заставляют ее двигаться в обратном направлении. Все лимфатические сосуды выливают свое содержимое у основания шеи в подключичные вены. Химический состав лимфы очень изменчив в зависимости от местонахождения в организме. Лимфа является постоянным резервом плазмы, способным восстановить ее количественный и качественный дефицит. Лимфатические узлы-барьеры регулируют лимфатические потоки. Они задерживают и вбирают в себя лимфу, когда ее объем становится чрезмерным. Также лимфатические узлы являются основными фильтрами для бактерий, 83% ядов и токсинов находятся в межклеточной жидкости и на прямую выходят в лимфатическую сеть. Каждый орган снабжен собственной лимфатической системой. Но особенно богаты ей легкие, сердце, диафрагма, почки, нервная система. Лимфатическая система принимает на себя всю экологическую нагрузку. Поэтому особенно важно начинать оздоровление организма с восстановления работы лимфатической системы и созданию ей оптимальных условий функционирования. Оптимальные условия работы 1. Обеспечение экологической безопасности и защита: • Отсутствие токсических ядов, радионуклидов и других физических и химических вредностей. Лимфатическая система является одной из самых важных систем очистки. Наличие любых экотоксических ядов приводит к усилению ее деятельности. Наличие неблагоприятной экологической обстановки оказывает резко отрицательное действие именно на эту систему. И только при ее нормальной работе можно сохранить здоровье всех остальных систем. • Благоприятная эпидемическая обстановка по вирусам, бактериям, грибкам; наличие хронических вирусно-бактериальных инфекций затрудняет работу лимфатической системы, в работу вовлекаются группы лимфатических узлов, которые при большом количестве инфекции сами становятся хроническими очагами (например, миндалины, аденоиды). • Благоприятный режим солнечной радиации. 2. Полноценное питание: • витамины: С, Е (является одним из самых сильных антиоксидантов, обеспечивает замедление процессов свободнорадикального окисления); • минералы (макро- и микроэлементы): германий (повышает оксигенацию тканей, очищает организм путем усиления выведения шлаков и токсинов); • аминокислоты: орнитин (обеспечивает дезинтоксикацию организма, способствует восстановлению поврежденных печеночных клеток). 3. Прочие условия: • Регулярные очистительные процедуры (баня, сауна, системная очистка организма). • Достаточные физические нагрузки. В результате усиленного потоотделения происходит очищение клеток от токсических веществ, усиливается обмен, ускоряются окислительно-восстановительные процессы в клетках. • Достаточное потребление воды хорошего качества. • Отсутствие гиподинамии, длительных статических поз при работе (затрудняют лимфоотток из нижних конечностей). • Достаточно развитая мышечная система (способствует более полноценной работе лимфатической системы). • Отсутствие хронических переохлаждений, как фактора снижения иммунитета.
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС! ЗАВТРА может быть ПОЗДНО! |
19.02.2013, 19:37 | #9 |
Senior Member
МегаБолтун
|
11. Иммунная система
Иммунная система в организме отвечает за функцию защиты организма, распознавания и обезвреживания чужеродных агентов. Мы различаем 3 вида иммунитета: клеточный, осуществляющийся Т-лимфоцитами, А-клеточный, осуществляемый клетками макрофагами, гуморальный (общий), осуществляемый В-лимфоцитами. Среди Т-лимфоцитов мы различаем лимфоциты памяти - запоминающие белки своего тела и отвечающие за постоянство внутренней среды, и лимфоциты-помощники. Они удаляют из организма чужие клетки. В-лимфоциты отвечают за распознавание вирусов, микробов, грибков. На них лежит функция защиты. Макрофаги - клетки, непрерывно поглощающие и расщепляющие бактерии. Накопление в крови и лимфе токсических продуктов, жира, холестерина, глюкозы, инсулина, радионуклидов вызывает отравление лимфоцитов, которое снижает их работоспособность и иммунитет. Возникает метаболическая иммунодепрессия. Деятельность иммунной системы очень ответственна. От качества ее работы зависит состояние всех органов и систем. Иммунитет можно рассматривать на разных уровнях. Например, нормальная кислотность желудочного сока является одним из звеньев иммунитета. Она способствует подавлению роста болезнетворных бактерий, попадающих в желудок с пищей и водой. При снижении кислотности желудка мы теряем один из защитных барьеров. В кишечнике тоже существует определенная степень защиты. Ее обеспечивают полезные микроорганизмы: молочно-кислые бактерии, бифидумбактерии и др. Они в процессе своей жизнедеятельности стимулируют выработку одного из важных иммунных факторов - интерферона. При нарушении микробиоценоза кишечника выработка интерферона значительно снижается. Иммунная система очень чувствительна к различным неблагоприятным факторам внешней и внутренней среды: стрессам, интоксикациям, экологическим ядам и токсинам, психическим и физическим перегрузкам, хроническим бактериальным, вирусным, грибковым инфекциям. На все эти факторы имеется один универсальный ответ - снижение иммунитета. Невозможно защитить организм от всех окружающих нас бактерий, вирусов, болезней. Иммунитет является типоспецифическим. Против туберкулезной палочки - свой вид иммунитета - противотуберкулезные иммунные антитела и т.д. В процессе своей жизнедеятельности мы можем лишь регулярно поддерживать иммунитет на достаточном уровне. В моменты эпидемии нужны дополнительные стимулирующие меры. Оптимальные условия работы 1. Обеспечение экологической безопасности и защита: • Отсутствие токсических ядов, солей тяжелых металлов, радионуклидов, пестицидов, нитратов. Иммунная система является органом-мишенью всех токсических ядов. • Хорошее качество питьевой воды. 2. Полноценное питание: • витамины: С, бета-каротин, растительные антиоксиданты, фолиевая кислота (укрепляет иммунитет, участвует в процессах нормального формирования и функционирования лейкоцитов), витамин D (стимулирует иммунитет), В5 (пантотеновая кислота - повышает сопротивляемость организма); • минералы (макро- и микроэлементы): йод, селен, германий (участвует в процессах транспорта кислорода в клетку), железо (повышает активность многих ферментов, укрепляет иммунитет); • аминокислоты: аргинин (стимулирует иммунную систему, повышает активность вилочковой железы, стимулирует выработку Т-лимфоцитов), аспартовая кислота (стимулирует иммунитет за счет повышения продукции иммуноглобулинов и антител), цитрулин (стимулирует иммунную систему), цистеин (обладает антиоксидантным действием), гистидин (необходим для синтеза гистамина, важного компонента многих иммунологических реакций), лизин (входит в состав антител), метионин (сильный антиоксидант, хороший поставщик серы, инактивирует свободные радикалы), орнитин (дезинтоксицирует и восстанавливает печеночные клетки), серин (поддерживает иммунную систему в нормальном состоянии), треонин (способствует продукции антител). 3. Прочие условия: • Благоприятная обстановка по вирусам, грибкам и бактериям. Наличие повышенного бактериального фона поддерживает иммунитет в постоянном напряжении, истощая его. • Достаточная кислотность желудочного сока, как естественного барьера от проникновения инфекции через желудочно-кишечный тракт. • Наличие полезной кишечной микрофлоры, принимающей участие в синтезе интерферона. • Периодическое поступление природных средств, обладающих бактериостатической активностью (растительных антибиотиков, фитонцидов). Иммунная система нуждается в постоянном укреплении. 12. Периферическая нервная система Главными компонентами периферической нервной системы являются нервы, которые соединяют центральную нервную систему с другими частями тела, и ганглии - группы нервных клеток, расположенных в различных точках нервной системы. Периферическая нервная система имеет два главных подразделения: соматическую нервную систему, находящуюся под постоянным контролем человека, и вегетативную систему, находящуюся под его бессознательным контролем. Соматическая система выполняет двойственную задачу. Во-первых, она собирает информацию об окружающем мире от органов чувств, в которых находятся специальные рецепторные клетки. Сигналы от этих рецепторов переносятся в центральную нервную систему по чувствительным волокнам. Во-вторых, соматическая система передает сигналы по двигательным волокнам от центральной нервной системы к скелетным мышцам, вызывая, таким образом, движение. Можно говорить о контроле мозгом каждой мельчайшей точки организма. Помимо своих специфических функций нервная клетка должна непрерывно возобновлять цитоплазму, а ведь длина нервных стволов достигает 1 метра. Благодаря аксонам и дендритам (разветвлениям нервной клетки) поверхность и объем нервной клетки значительно увеличены. Она отличается очень напряженным метаболизмом. Надо переработать питательные вещества, организовать элиминацию отходов на поверхностях и пространствах по размерам в миллионы раз превышающим объем тела самой клетки. Вегетативная система ответственна за поддержание автоматических (происходящих без специальных умственных или других усилий со стороны человека) функций таких органов, как сердце, легкие, желудок, кишечник, мочевой пузырь, кровеносные сосуды. Деятельность вегетативной нервной системы очень разнообразна и мало изучена. Она делится на симпатическую и парасимпатическую нервную систему. По механизму действия - это две противоположно направленные системы. Деятельность симпатической нервной системы всегда направлена на стабилизацию процесса, сохранение постоянства внутренней среды. Парасимпатическая нервная система отвечает за усиление функций органа. Это система экстремального ответа. Две системы всегда находятся в непрерывном взаимодействии. Если их работа сбалансирована, то организм в состоянии приспособиться к любым изменяющимся условиям. Оптимальные условия работы 1. Обеспечение экологической безопасности и защита: Определенная необходимая и достаточная эндоэкологическая чистота: отсутствие токсических ядов, солей тяжелых металлов, радионуклидов, нитратов, нитритов, пестицидов (имеют свойство накапливаться в тканях нервной системы). 2. Полноценное питание: • витамины: группы В: В5 (антистрессовый витамин), В6 (необходим для синтеза нуклеиновых кислот), В2 (предотвращает повреждение нервной ткани, участвует в продукции ацетилхолина); С, Р, ниацин, РР (никотиновая кислота), липотропные и антисклеротические витамины холин (участвует в передаче нервного импульса), инозит, витамины Е, В12, фолиевая кислота, провитамин А, лецитин (необходимы для нормального метаболизма нервных клеток), биотин (необходим для нормального функционирования нервной ткани); • минералы (макро- и микроэлементы): медь, йод, магний, селен, калий, натрий, цинк; • аминокислоты: глицин, метионин, аспарагин (препятствует чрезмерному возбуждению и излишнему торможению), гамма-аминомасленная кислота (нейромедиатор, предотвращает перевозбуждение клеток, снимает напряжение), гистидин (входит в состав миелиновых оболочек), фенилалонин (управляет процессом памяти и настроением), триптофан (используется для синтеза нейромедиатора - серотонина); эссенциальные фосфолипиды (участвуют в образовании клеточных мембран). 3. Прочие условия: • Хорошее состояние позвоночника, как одно из условий нормальной работы симпатических и парасимпатических ганглиев (нервных узлов), расположенных паравертебрально (около позвоночника). • Отсутствие хронических переохлаждений, как фактора повреждения периферических нервов. • Отсутствие тяжелой физической работы, как фактора повреждения межпозвонковых дисков. • Хорошее состояние шейного отдела позвоночника. При длительной сидячей работе нарушается статическая нагрузка на позвонки. Как следствие, развивается компрессия межпозвонковых дисков, приводящих к развитию заболеваний периферической нервной системы (радикулитов, плекситов, цервикалгий). • Нормальные физиологические позы во время сна (маленькая подушка под шею), во время работы (сохранение нормального физиологического изгиба поясничного отдела позвоночника). Здоровый позвоночник - гарантия хорошей работы периферической нервной системы.
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС! ЗАВТРА может быть ПОЗДНО! |
19.02.2013, 19:38 | #10 |
Senior Member
МегаБолтун
|
http://www.referat.business-top.info/anatomy/03.html
Общее знакомство с организмом человека (органы и системы органов)
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС! ЗАВТРА может быть ПОЗДНО! |
19.02.2013, 19:39 | #11 |
Senior Member
МегаБолтун
|
http://biofile.ru/chel/1891.html
Работа систем организма человека Основные понятия: Организм человека - единая, сложная, саморегулируемая и саморазвивающаяся биологическая система, находящаяся в постоянном взаимодействии с окружающейся средой, имеющая способность к самообучению, восприятию, передаче и хранению информации. Функциональная система организма - это группа органов, обеспечивающая согласованное протекание в них процессов жизнедеятельности. Выделение групп органов в организме человека в системы условно, так как они функционально взаимосвязаны между собой. Различают следующие системы человеческого организма: нервная, сердечно-сосудистая, дыхательная, опорно-двигательная, пищеварительная, эндокринная, выделительная и др. Гомеостаз - относительное динамическое постоянство внутренней среды организма (температуры тела, кровяного давления, химического состава крови и т.д.) Резистентность - способность организма работать в условиях неблагоприятных изменений внутренней среды. Адаптация - способность организма приспосабливаться к меняющимся условиям внешней среды. Гипокинезия - недостаточная двигательная активность организма. Гиподинамия - совокупность отрицательных морфо-функциональных изменений в организме вследствие недостаточной двигательной активности (атрофические изменения в мышцах, детренированность сердечно-сосудистой системы, деминерализация костей и т.д.). Рефлекс - ответная реакция организма на раздражение как внутреннее, так и внешнее, осуществляемая посредством центральной нервной системы. Рефлексы делятся на условные (приобретенные в процессе жизнедеятельности) и безусловные (врожденные). Гипоксия - кислородное голодание, которое возникает при недостатке кислорода во вдыхаемом воздухе или в крови. Максимальное потребление кислорода (МПК) - наибольшее количество кислорода, которое организм может потребить в минуту при предельно-интенсивной мышечной работе. Величина МПК определяет функциональное состояние и степень тренированности организма. Организм человека как единая биологическая система Медицинская наука при рассмотрении организма человека и его систем исходит из принципа целостности человеческого организма, обладающего способностью к саморазвитию.Организм человека развивается под влиянием генотипа (наследст ценности), а также факторов постоянно изменяющейся внешней природной и социальной среды. Целостность организма обусловлена структурой и функциональной связью всех его систем состоящих из дифференцированных, высокоспециализированных клеток, объединённых в структурные комплексы, обеспечивающие морфологическую основу для наиболее общих проявлений жизнедеятельности организма. Физиологическая регуляция процессов, протекающих в организме, весьма совершенна и позволяет ему постоянно приспосабливаться к изменяющимся воздействиям внешней среды. Все органы и системы человеческого организма находятся в постоянном взаимодействии и являются саморегулирующей системой, в основе которой лежат функции нервной и эндокринной систем организма. Взаимосвязанная и согласованная работа всех органов и физиологических систем организма обеспечивается гуморальными (жидкостными) и нервными механизмами. При этом ведущую роль играет и центральная нервная система, которая способна воспринимать воздействия внешней среды и отвечать на него, включая взаимодействие психики человека, его двигательных функций с различными условиями внешней окружающей среды. Отличительной особенностью человека является возможность созидательно и активно изменять как внешние природные, так и социально-бытовые условия для укрепления здоровья, повышения умственной и физической работоспособности. Без знания строения человеческого тела, закономерностей деятельности отдельных систем, органов и всего организма в целом, процессов жизнедеятельности, протекающих в условиях воздействия на организм естественных факторов природы, невозможно правильно организовать и процесс физического воспитания. Учебно-тренировочный процесс по физическому воспитанию базируется на ряде естественных наук. В первую очередь это анатомия и физиология. Анатомия - наука, изучающая форму и строение человеческого организма, отдельных органов и тканей, выполняющих какую-либо функцию в процессе развития человека. Анатомия объясняет внешнюю форму, внутреннее строение и взаимное расположение органов и систем организма человека. Физиология - наука о закономерностях функционирования целостного живого организма. Функционально все органы и системы организма человека находятся в тесной взаимосвязи. Активизация деятельности одного органа обязательно влечет за собой активизацию деятельности других органов. . Функциональной единицей организма является клетка - элементарная живая система, обеспечивающая структурное и функциональное единство тканей, размножение, рост и передачу наследственных свойств организма. Благодаря клеточной структуре организма возможны восстановление отдельных частей органов и тканей организма. У взрослого человека число клеток в организме достигает порядка 100 триллионов. Система клеток и неклеточных структур, объединенных общей физиологической функцией, строением и происхождением, которая составляет морфологическую основу обеспечения жизнедеятельности организма, называется тканью. Учитывая механизм обмена и связи клеток с окружающей средой, хранения и передачи генетической информации, обеспечения энергией, различают основные типы тканей: эпителиальную, соединительную, мышечную и нервную. Эпителиальная ткань образует наружный покров тела - кожу. Поверхностный эпителий защищает организм от влияния внешней среды. Данной ткани свойственна высокая степень регенерации (восстановления). К соединительной ткани относят собственно соединительную ткань, хрящевую и костную. Группа тканей организма, обладающих свойствами сократимости, называется мышечной тканью. Различают гладкую и поперечно-полосатую мышечную ткань. Поперечно-полосатая ткань сокращается по желанию человека, гладкая - произвольно (сокращение внутренних органов, кровеносных сосудов и т.п.) Нервная ткань является основным структурным компонентом нервной системы человека. Характеристика функциональных систем организма Выделение органов в организме человека в системы условно, так как они функционально взаимосвязаны между собой. Различают следующие системы человеческого организма: опорно-двигательную, сердечнососудистую, дыхательную, нервную, эндокринную, выделительную, пищеварительную, лимфатическую и др.Опорно-двигательный аппарат Непосредственными исполнителями всех движений являются мышцы. Однако только они сами по себе не могут осуществлять функцию движения. Механическая работа мышц осуществляется через костные рычаги. Опорно-двигательный аппарат включает в себя три относительно самостоятельные системы: костную (скелет), связочно-суставную (подвижные соединения костей) и мышечную (скелетная мускулатура). Кости и их соединения в совокупности образуют скелет, выполняющий жизненно важные функции: защитную, рессорную и двигательную. Кости скелета принимают участие в обмене веществ и кроветворении. В основу классификации костей, которых у взрослого человека насчитывается более 200, положены форма, структура и функции костей. По форме кости разделяют на длинные, короткие, плоские или округлые; по структуре на трубчатые, губчатые и воздухоносные. В процессе эволюции человека длина и толщина костей увеличиваются и кости приобретают большую прочность. Эта прочность костей обусловлена химическим составом кости, то есть содержанием в них органических и минеральных веществ и ее механическим строением. Соли кальция и фосфора придают костям твердость, а ее органические компоненты - упругость и эластичность. С возрастом содержание минеральных веществ, в основном карбоната кальция, становится меньше, что приводит к снижению упругости и эластичности костей, обусловливая их ломкость (хрупкость). Снаружи кость покрыта тонкой оболочкой - надкостницей, плотно соединяющейся с веществом кости. Надкостница имеет два слоя: наружный плотный слой насыщен сосудами (кровеносными и лимфатическими) и нервами, а внутренний костеобразующий - особыми клетками, которые способствуют росту кости в толщину. За счет этих клеток происходит и срастание кости при ее переломе. Надкостница покрывает кость почти на всем ее протяжении, за исключением суставных поверхностей. Рост костей в длину происходит за счет хрящевых частей, расположенных на краях. Суставы обеспечивают подвижность сочленяющимся костям скелета. Суставные поверхности покрыты тонким слоем хряща, что обеспечивает скольжение суставных поверхностей с малым трением. Каждый сустав полностью заключен в суставную сумку. Стенки этой сумки выделяют суставную жидкость, которая выполняет роль смазки. Связочно-капсульный аппарат и окружающие сустав мышцы укрепляют и фиксируют его. Основными направлениями движения, которые обеспечивают суставы, являются: сгибание - разгибание, отведение - приведение, вращение и круговые движения. Скелет человека делится на скелет головы, туловища и конечностей. Скелет головы называется черепом, который имеет сложное строение. В черепе находится мозг и некоторые сенсорные системы: зрительная, слуховая, обонятельная. При занятиях физическими упражнениями большое значение имеет наличие опорных мест черепа - контрфорсов, которые смягчают толчки и сотрясения при беге, прыжках. Непосредственно с туловищем череп соединяется с помощью двух первых шейных позвонков. Скелет туловища состоит из позвоночного столба и грудной клетки. Позвоночный столб состоит из 33-34 позвонков и имеет пять отделов: шейный (7 позвонков), грудной (12), поясничный (5), крестцовый (5 сросшихся позвонков) и копчиковый (сросшиеся 4-5 позвонков). Соединение позвонков осуществляется с помощью хрящевид-ных, эластичных межпозвоночных дисков и суставных отростков. Межпозвоночные диски увеличивают подвижность позвоночника. Чем больше их толщина, тем выше гибкость. Если изгибы позвоночного столба выражены сильно (при сколиозах) подвижность грудной клетки уменьшается. Плоская или округлая спина (горбатая) свидетельствует о слабости мышц спины. Коррекция осанки проводится общеразвивающими, силовыми упражнениями и упражнениями на растягивания. В основной скелет входит и грудная клетка, которая выполняет защитную функцию для внутренних органов и состоит из грудины, 12 пар ребер и их соединений. Ребра представляют собой плоские дугообразно-изогнутые длинные кости, которые при помощи гибких хряще-видных концов прикрепляются подвижно к грудине. Все соединения ребер очень эластичны, что имеет важное значение для обеспечения дыхания. Скелет верхней конечности образован плечевым поясом, состоящим из двух лопаток и двух ключиц, и свободной верхней конечностью, включающей плечо, предплечье и кисть. Скелет нижней конечности образован тазовым поясом, состоящим из двух тазовых костей и крестца, и скелетом свободной нижней конечности, включающей бедро, голень и стопу. Правильно организованные занятия по физвоспитанию не наносят ущерба развитию скелета, он становится более прочным в результате утолщения коркового слоя костей. Это имеет важное значение при выполнении физических упражнений, требующих высокой механической прочности (бег, прыжки и т.д.). Неправильное построение тренировочных занятий может привести к перегрузке опорного аппарата. Однобокость в выборе упражнений также может вызвать деформацию скелета.
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС! ЗАВТРА может быть ПОЗДНО! |
19.02.2013, 19:40 | #12 |
Senior Member
МегаБолтун
|
У людей с ограниченной двигательной активностью, труд которых характеризуется удержанием определенной позы в течение длительного времени, возникают значительные изменения костной и хрящевой ткани, что особенно неблагоприятно отражается на состоянии позвоночного столба и межпозвоночных дисков. Занятия физическими упражнениями укрепляют позвоночник и за счет развития мышечного корсета ликвидируют различные искривления, что способствует выработке правильной осанки и расширению грудной клетки.
Любая двигательная, в том числе и спортивная, деятельность совершается при помощи мышц, за счет их сокращения. Поэтому строение и функциональные возможности мускулатуры необходимо знать любому человеку, но в особенности тем, кто занимается физическими упражнениями и спортом. На долю мышц приходится значительная часть сухой массы тела человека. У женщин на мышцы приходится до 35% общей массы тела, а у мужчин до 50%. Специальной силовой тренировкой можно значительно увеличить мышечную массу. Физическое бездействие приводит к уменьшению мышечной массы, а зачастую - к увеличению жировой массы. В организме человека различают несколько видов мышц: скелетные (поперечно-полосатые), гладкие и сердечную мышцы. Деятельность мышц регулируется центральной нервной системой. Скелетные мышцы удерживают тело человека в равновесии и осуществляют все движения. При сокращении мышцы укорачиваются и через свои эластичные элементы - сухожилия осуществляют движения частей скелета. Работой скелетных мышц можно управлять по желанию человека, однако, при интенсивной работе они очень быстро утомляются. Гладкие мышцы входят в состав внутренних органов человека. Гладкомышечные клетки укорачиваются в результате сокращения сократительных элементов, но скорость их сокращения в сотни раз меньше, чем в скелетных мышцах. Благодаря этому гладкие мышцы хорошо приспособлены к длительному стойкому сокращению без утомления и с незначительными энергозатратами. В каждую мышцу входит нерв, распадающийся на тонкие и тончайшие ветви. Нервные окончания доходят до отдельных мышечных волокон, передавая им импульсы (возбуждение), которые заставляют их сокращаться. Мышцы на своих концах переходят в сухожилия, через которые они передают усилия на костные рычаги. Сухожилия также обладают упругими свойствами и являются последовательными упругими элементами мышц. Сухожилия обладают большей прочностью на растяжение по сравнению с мышечной тканью. Наиболее слабыми и поэтому часто травмируемыми участками мышцы являются переходы мышцы в сухожилие. Поэтому перед каждым тренировочным занятием необходима хорошая предварительная разминка. Мышцы в организме человека образуют рабочие группы и работают, как правило, скоординированно (согласованно) в пространственно-временных и динамико-временных отношениях. Такое взаимодействие называется мышечной координацией. Чем больше количество мышц или групп принимает участие в движении, тем сложнее движение и тем больше энергозатраты и тем большую роль играет межмышечная координация для повышения эффективности движения. Более совершенная межмышечная координация приводит к увеличению проявляемой силы, быстроты, выносливости и гибкости. Все мышцы пронизаны сложной системой кровеносных сосудов. Протекающая по ним кровь снабжает их питательными веществами и кислородом. Сила сокращения мышцы зависит от площади поперечного сечения мышцы, от величины площади ее прикрепления к кости, а также от направления развиваемого мышцей усилия и длины плеча приложения силы. Например, сгибатель бицепса может создать усилия до 150 кг, а голени до 480 кг. В процессе сокращения мышцы участвует одновременно лишь часть мышечных волокон, остальные в это время выполняют пассивную функцию. Поэтому мышцы могут совершать длительное время работу, однако постепенно они теряют свою работоспособность и наступает утомление мышц. В результате физических тренировок объем и сила мышцы значительно возрастает в 1,5-3 раза, а скорость сокращения и сопротивляемость к неблагоприятным факторам повышается в 1,2-2 раза, что приводит к возрастанию прочности сухожилий под влиянием мышечных усилий. 1. Дельтовидная мышца. Она покрывает плечевой сустав. Состоит из трех пучков: переднего, среднего и заднего. Каждый пучок двигает руку в сторону, одноименную своему названию. 2. Бицепс или двуглавая мышца плеча. Расположена на передней поверхности руки. Сгибает руку в локтевом суставе. 3. Трицепс или трехглавая мышца плеча. Расположена на задней поверхности руки. Разгибает руку в локтевом суставе. 4. Сгибатели и разгибатели пальцев. Одни расположены на внутренней поверхности предплечья, другие на внешней стороне. Они ведают движениями пальцев. Мышцы плечевого пояса 5. Грудино-ключично-сосцевидная мышца. Она вращает и нагибает голову, участвует в подъеме грудной клетки вверх. 6. Лестничные мышцы шеи располагаются в глубине шеи. Участвуют в движении позвоночника. 7. Трапециевидная мышца. Находится на задней поверхности шеи и грудной клетки. Она поднимает и опускает лопатки, тянет голову назад. Мышцы груди 8. Большая грудная мышца. Расположена на передней поверхности | рудной клетки. Приводит руку к туловищу и вращает ее внутрь. 9. Передняя зубчатая мышца. Находится на боковой поверхности грудной клетки. Она вращает лопатку и отводит ее от позвоночного столба 10. Межреберные мышцы. Находятся на ребрах. Участвуют в акте чихания. Мышцы живота. 11. Прямая мышца. Расположена вдоль передней поверхности брюшного пресса. Она сгибает туловище вперед. 12. Наружная косая мышца. Находится сбоку брюшного пресса. при одностороннем сокращении сгибает и вращает туловище, при двустороннем - наклоняет его вперед. Мышцы спины 13. Широчайшая мышца. Находится на задней поверхности грудной клетки. Приводит плечо к туловищу, вращает руку внутрь, тянет ее назад. 14. Длинные мышцы. Расположены вдоль позвоночника. Разгибают, наклоняют и вращают туловище в стороны. К мышцам спины также относится и трапециевидная мышца, которая была рассмотрена выше. Мышцы ног 15. Ягодичные мышцы. Двигают ногу в тазобедренном суставе, отводят, разгибают, вращают бедро внутрь и наружу. Выпрямляют согнутое имеред туловище. 16. Четырехглавая мышца. Находится на передней поверхности бедра. Она разгибает но1^ в колене, сгибает бедро в тазобедренном суставе и вращает его. 17. Двуглавая мышца. Расположена на задней поверхности бедра. Сгибает ногу в коленном суставе и разгибает в тазобедренном суставе. 18. Икроножная мышца. Расположена на задней поверхности голени. Сгибает стопу, участвует в сгибании ноги в коленном суставе. 19. Камбаловидная мышца. Находится в глубине голени. Сгибает стопу. Сердечно-сосудистая система (система кровообращения) Деятельность всех систем организма человека осуществляется при взаимосвязи гуморальной (жидкостной) регуляции и нервной системы. Гуморальная регуляция осуществляется внутренней системой транспортировки через кровь и систему кровообращения, к которой относится сердце, кровеносные сосуды, лимфатические сосуды и органы, вырабатывающие особые клетки - форменные элементы. Движение крови и лимфы по сосудам происходит непрерывно, благодаря чему органы, ткани, клетки постоянно получают необходимые им в процессе ассимиляции пищевые вещества и кислород, и непрерывно удаляются продукты распада в процессе обмена веществ В зависимости от характера и состава циркулирующей в организме жидкости сосудистую систему разделяют на кровеносную и лимфатическую. Кровь - это разновидность соединительной ткани с жидким межклеточным веществом (плазмой) - 55% и взвешенных в ней форменных элементов (эритроцитов, лейкоцитов и тромбоцитов) - 45%. Основные компоненты плазмы - это вода (90-92%), остальные белки и минеральные вещества. Благодаря наличию белков в крови вязкость ее выше воды (примерно в 6 раз). Состав крови относительно стабилен и имеет слабую щелочную реакцию. Эритроциты - красные кровяные клетки, они являются носителем красного пигмента - гемоглобина. Гемоглобин уникален тем, что обладает способностью к образованию веществ в комплексе с кислородом. Гемоглобин составляет почти 90% в эритроцитах и служит переносчиком кислорода из легких ко всем тканям. В 1 куб. мм крови у мужчин в среднем 5 млн. эритроцитов, у женщин - 4,5 млн. У людей, занимающихся спортом, эта величина достигает 6 млн. и более. Эритроциты образуются в клетках красного костного мозга. Лейкоциты - белые кровяные клетки. Они далеко не так многочисленны, как эритроциты. В 1 куб. мм крови содержится 6-8 тысяч белых кровяных клеток. Основная функция лейкоцитов - защита организма от возбудителей болезней. Особенностью лейкоцитов является способность проникать к местам скопления микробов из капилляров в межклеточное пространство, где они выполняют свои защитные функции. Продолжительность их жизни 2-4 дня. Их число все время пополняется за счет вновь образующихся из клеток костного мозга, селезенки и лимфатических узлов. Тромбоциты - кровяные пластинки, основная функция которых -обеспечение свертываемости крови. Кровь свертывается вследствие разрушения тромбоцитов и превращения растворимого белка плазмы фибриногена в нерастворимый фибрин. Волокна белка вместе с кровяными клетками формируют сгустки, закупоривающие просветы кровеносных сосудов. Под влиянием систематических тренировок увеличивается число эритроцитов и содержание гемоглобина в крови, в результате чего повышается кислородная емкость крови. Повышается сопротивляемость организма к простудным и инфекционным заболеваниям из-за повышения активности лейкоцитов. Основные функции крови: - транспортная - доставляет клеткам питательные вещества и кислород, удаляет из организма продукты распада при обмене веществ; - защитная - защищает организм от вредных веществ и инфекции, за счет наличия механизма свертывания останавливает кровотечение; - теплообменная - участвует в поддержании постоянной темпера-|уры тела. Кровь в организме человека движется по замкнутой системе, в которой выделяются два круга кровообращения - большой и малый (рисунок 22). 1 - правое предсердие; 2 - правый желудочек; 3 - легочная артерия; 4 - капилляры в легких; 5 - легочная вена; 6 - левое предсердие; 7 - левый желудочек; 8 - аорта; 9 - капилляры тела; 10 - полая вена. Центром кровеносной системы является сердце, выполняющее роль двух насосов. Правая сторона сердца (венозная) продвигает кровь по малому кругу кровообращения, левая (артериальная)- по большому кругу Малый круг кровообращения начинается от правого желудочка сердца, затем венозная кровь поступает в легочный ствол, который разделяется на две легочные артерии, которые делятся на более мелкие артерии, переходящие в капилляры альвеол, в которых происходит газообмен (кровь отдает углекислый газ и обогащается кислородом). Из каждого легкого выходит по две вены, впадающие в левое предсердие. Большой круг кровообращения начинается от левого желудочка сердца. Обогащенная кислородом и питательными веществами артериальная кровь поступает ко всем органам и тканям, где происходит газообмен и обмен веществ. Забрав из тканей углекислый газ и продукты распада, венозная кровь, собирается в вены и двигается к правому предсердию. По кровеносной системе перемещаегся кровь, которая бывает артериальной (насыщенной кислородом) и венозной (насыщенной углекислым газом). У человека существуют три типа кровеносных сосудов: артерии, вены, капилляры. Артерии и вены отличаются друг от друга направлением движения крови в них. Таким образом, артерия - это любой сосуд, несущий кровь от сердца к органу, а вена - несущий кровь от органа к сердцу, независимо от состава крови (артериальная или венозная) в них. Капилляры - тончайшие сосуды, они тоньше человеческого волоса в 15 раз. Стенки капилляров полупроницаемые, через них вещества, растворенные в плазме крови, просачиваются в тканевую жидкость, из которой переходят в клетки. Продукты обмена клеток проникают в обратном направлении из тканевой жидкости в кровь.
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС! ЗАВТРА может быть ПОЗДНО! |
19.02.2013, 19:40 | #13 |
Senior Member
МегаБолтун
|
Кровь движется по сосудам от сердца под воздействием давления, создаваемого сердечной мышцей в момент ее сокращения. На возвратное движение крови по венам оказывают влияние несколько факторов:
- во-первых, венозная кровь продвигается к сердцу под действием сокращений скелетных мышц, которые как бы выталкивают кровь из вен в сторону сердца, при этом обратное движение крови исключается, так как клапаны, находящиеся в венах, пропускают кровь только в одном направлении - к сердцу. Механизм принудительного продвижения венозной крови к сердцу с преодолением сил гравитации под воздействием ритмических сокращений и расслаблений скелетных мышц называется мышечным насосом. Таким образом, скелетные мышцы при циклических движениях существенно помогают сердцу обеспечивать циркуляцию крови в сосудистой системе; - во-вторых, при вдохе происходит расширение грудной клетки и в ней создается пониженное давление, которое обеспечивает подсасывание венозной крови к грудному отделу; - в-третьих, в момент систолы (сокращения) сердечной мышцы при расслаблении предсердий в них также возникает подсасывающий эффект, способствующий движению венозной крови к сердцу. Сердце - центральный орган системы кровообращения. Сердце представляет собой полый четырехкамерный мышечный орган, расположенный в грудной полости, разделенный вертикальной перегородкой на две половины - левую и правую, каждая из которых состоит из желудочка и предсердия. Сердце работает автоматически под контролем центральной нервной системы. Волна колебаний, распространяемая по эластичным стенкам артерий в результате гидродинамического удара порции крови, выбрасываемой в аорту при сокращении левого желудочка, называется частотой сердечных сокращений (ЧСС). ЧСС взрослого мужчины в покое составляет 65-75 уд/мин., у женщин на 8-10 ударов больше, чем у мужчин. У тренированных спортсменов ЧСС в покое становится реже за счет увеличения мощности каждого сердечного сокращения и может достигать 40-50 уд/мин. Количество крови, выталкиваемое желудочком сердца в сосудистое русло при одном сокращении, называется систолическим (ударным) объемом крови. В состоянии покоя он составляет у нетренированных - 60, у фенированных-80 мл. При физической нагрузке у нетренированных возрастает до 100-130 мл., а у тренированных до 180-200 мл. Количество крови, выбрасываемое одним желудочком сердца в течение одной минуты, называется минутным объемом крови._В состоянии покоя этот показатель равен в среднем 4-6 л. При физической нагрузке он повышается у нетренированных до 18-20 л., а у тренированных до 30-40 л. При каждом сокращении сердца поступающая в систему кровообращения кровь создает в ней давление, зависящее от эластичности стенок сосудов. Его величина в момент сердечного сокращения (систолы) составляет у молодых людей 115-125 мм рт. ст. Минимальное (диастолическое) давление в момент расслабления сердечной мышцы составляет - 60-80 мм рт. ст. Разница между максимальным и минимальным давлением называется пульсовым давлением. Оно составляет примерно 30-50 мм рт. ст. Под воздействием физической тренировки размеры и масса сердца увеличиваются в связи с утолщением стенок сердечной мышцы и увеличением его объема. Мышца тренированного сердца более густо пронизана кровеносными сосудами, что обеспечивает лучшее питание мышечной ткани и ее работоспособность. Дыхательная система Дыханием называется комплекс физиологических процессов, обеспечивающих потребление кислорода и выделение углекислого газа живым организмом. Процесс дыхания принято делить на: - внешнее (легочное), т.е. обмен газов между легкими и атмосферой; - тканевое, т.е. процесс обмена кислородом и углекислым газом между кровью и клетками тела. Внешнее дыхание осуществляется с помощью дыхательного аппарата, состоящего из воздухоносных путей (полость носа, носоглотка, гортань, дыхательное горло, трахеи и бронхи). Стенки носового хода устланы мерцательным эпителием, который задерживает поступающую с воздухом пыль. Внутри носового хода происходит согревание воздуха. При дыхании через рот воздух поступает сразу в глотку и из нее в гортань, не очищаясь и не согреваясь. При вдохе воздух попадает в легкие, каждое из которых находится в плевральной полости и работает изолированно друг от друга. Каждое легкое имеет форму конуса. Со стороны, обращенной к сердцу, в каждое легкое (ворота легкого) входит бронх, делясь на более мелкие бронхи, образуется так называемое бронхиальное дерево. Мелкие бронхи заканчиваются альвеолами, которые оплетены густой сетью капилляров, по которым течет кровь. При прохождении крови по легочным капиллярам и происходит газообмен: углекислый газ, выделяясь из крови поступает в альвеолы, а те отдают в кровь кислород. Показателями работоспособности органов дыхания являются дыхательный объем, частота дыхания, жизненная емкость легких, легочная вентиляция, потребление кислорода и др. Дыхательный объем - объем воздуха, проходящий через легкие за один дыхательный цикл (вдох, выдох). Этот показатель значительно увеличивается у тренированных и составляет от 800 мл и более. У нетренированных дыхательный объем в состоянии покоя находится на уровне 350-500 мл. Если после нормального выдоха сделать максимальный выдох, то из легких выйдет еще 1,0-1,5 л воздуха. Этот объем принято называть резервным. Количество воздуха, которое можно вдохнуть сверх дыхательного объема называют дополнительным объемом._Сумма трех объемов: дыхательного, дополнительного и резервного составляет жизненную емкость легких. Жизненная емкость легких (ЖЕЛ) - максимальный объем воздуха, который может выдохнуть человек после максимального вдоха (измеряется методом спирометрии). Жизненная емкость легких в значительной степени зависит от возраста, пола, роста, окружности грудной клетки, физического развития. У мужчин ЖЕЛ колеблется в пределах 3200-4200 мл, у женщин 2500-3500 мл. У спортсменов, особенно занимающихся циклическими видами спорта (плавание, лыжные гонки и т.п.), ЖЕЛ может достигать у мужчин 7000 мл и более, у женщин 5000 мл и более. Частота дыхания - количество дыхательных циклов в минуту. Один цикл состоит из вдоха, выдоха и дыхательной паузы. Средняя частота дыхания в покое 15-18 циклов в минуту. У тренированных людей, за счет увеличения дыхательного объема, частота дыхания снижается до 8-12 циклов в минуту. При физической нагрузке частота дыхания увеличивается, например, у пловцов до 45 циклов в минуту. Легочная вентиляция - объем воздуха, который проходит через легкие за минуту. Величина легочной вентиляции определяется умножением величины дыхательного объема на частоту дыхания. Легочная вентиляция в покое находится на уровне 5000-9000 мл. При физической нагрузке этот показатель увеличивается. Потребление кислорода - количество кислорода, использованного организмом в покое или при нагрузке за 1 минуту. В состоянии покоя человек потребляет 250-300 мл кислорода в 1 минуту. При физической нагрузке эта величина увеличивается. Наибольшее количество кислорода, которое организм может потребить в минуту при предельной мышечной работе, называется максимальным потреблением кислорода (МПК). Наиболее эффективно дыхательную систему развивают циклические виды спорта (бег, гребля, плавание, лыжный спорт и т.п.). Нервная система человека Нервная система человека объединяет все системы организма в единое целое и состоит из нескольких миллиардов нервных клеток и их отростков. Длинные отростки нервных клеток, объединяясь, образуют нервные волокна, которые подходят ко всем тканям и органам человека. Нервную систему делят на центральную и периферическую. К центральной нервной системе относят головной и спинной мозг. Периферическая нервная система образуется нервами, отходящими от головного и спинного мозга. От головного мозга отходят 12 пар черепных нервов, а от спинного - 31 пара спинномозговых нервов. По функциональному принципу нервную систему делят на соматическую и вегетативную. Соматические нервы иннервируют на поперечнополосатую мускулатуру скелета и некоторые органы (язык, глотка, гортань и др.). Вегетативные нервы регулируют работу внутренних органов (сокращение сердца, перистальтика кишечника и др.). Основными нервными процессами являются возбуждение и торможение, возникающие в нервных клетках. Возбуждение - состояние нервных клеток, когда они передают или направляют сами нервные импульсы другим клеткам. Торможение - состояние нервных клеток, когда их активность направлена на восстановление. Нервная система действует по принципу рефлекса. Различают два вида рефлексов: безусловный (врожденный) и условный (приобретенный в процессе жизнедеятельности). Рефлекс - это ответная реакция организма на раздражение, осуществляемая при участии ЦНС. Все движения человека представляют собой приобретенные в процессе индивидуальной жизни новые формы двигательных актов. Двигательный навык - двигательное действие, выполняемое автоматически без участия внимания и мышления. Образование двигательного навыка происходит последовательно по трем фазам: генерализации, концентрации, автоматизации. Фаза генерализации характеризуется расширением и усилением возбудительного процесса, в результате чего в работу включаются дополнительные группы мышц. В этой фазе движения неэкономичны, плохо координированны и неточны. Фаза концентрации характеризуется дифференцированным торможением излишнего возбуждения и его концентрации в нужных зонах головного мозга. Движения в этой фазе становятся точными, экономичными, стабильными. Фаза автоматизации характеризуется выполнением движения автоматически, без участия внимания и мышления. Автоматизированный навык отличается высокой степенью надежности и стабильности выполнения всех составляющих его движений. В образовании двигательного навыка участвуют различные анализаторы: двигательный, вестибулярный, кожный и др. Анализатор - это структурная целостность рецептора и нерва, проводящего возбуждение в центр, находящийся в коре головного мозга. Изменение функции того или иного анализатора тесно связано со спецификой физических упражнений. У занимающихся физическими упражнениями совершенствуется глазодвигательный анализатор, увеличивается поле зрения (норма - 1 5°, при специальной тренировке до 30°) и совершенствуется глубина восприятия. При исследованиях кожного анализатора в процессе тренировок установлено, что те области тела, которые подвергаются соприкосновениям и ударам, имеют пониженную тактильную и болевую чувствительность. В процессе физической тренировки нервная система человека совершенствуется, осуществляя более тонко взаимодействие процессов возбуждения и торможения различных нервных центров. Тренировка позволяет органам чувств более дифференцированно осуществлять двигательное действие, формирует способность к более быстрому усвоению новых двигательных навыков. Обмен веществ и энергии — основа жизнедеятельности организма человека Единство организма человека с внешней средой проявляется прежде всего в непрекращающемся обмене веществ и энергии. Под обменом веществ (метаболизмом) принято понимать сложный, постоянно протекающий, самосовершающийся и саморегулирующийся биохимический и энергетический процесс, связанный с поступлением в организм из окружающей среды различных питательных веществ, обеспечивающих постоянство химического состава и внутренних параметров организма, его жизнедеятельность, развитие и рост, размножение, способность к движению и адаптации к изменяющимся условиям внешней окружающей среды. Обмен веществ — это два взаимосвязанных противоположных процесса, протекающих одновременно, в результате которых происходит усвоение веществ, поступающих из окружающей среды и их биологическое превращение в потенциальную энергию (ассимиляция), а второй процесс, связанный с постоянным распадом веществ и выведение из организма продуктов распада (диссимиляция). Эти процессы согласованы между собой и образуют целостную систему, обеспечивающую нормальную функциональную жизнедеятельность организма человека. Процесс обмена веществ регулируется нервно-гуморальным (жидкостным) путем, то есть системой и железами внутренней секреции, усиливая или тормозя гормонообразование и поступление гормонов в кровь. В обменных процессах участвуют белки, углеводы, жиры, вода и минеральные соли. Важная роль в этих процессах принадлежит также витаминам, которые являются катализаторами обменных процессов. На белковый обмен существенное влияние оказывает гормон щитовидной железы - тироксин; на углеводный обмен оказывает влияние гормон надпочечников - адреналин и гормон поджелудочной железы - инсулин; на жировой обмен влияют гормоны поджелудочной, щитовидной желез и др. Общая интенсивность обменных процессов в течение жизни меняется. Сразу после рождения человека скорость поступления в организм питательных веществ превышает скорость их распада. Это обеспечивает рост организма. К 17-19 годам различия в скорости процессов ассимиляции и диссимиляции постепенно сглаживаются, в организме к этому времени устанавливается динамическое равновесие между этими сторонами обменных процессов. С этого времени рост организма, по существу прекращается, но процесс ассимиляции все же преобладает. В возрасте от 25 до 60 лет в процессе обмена веществ наблюдается равновесие, при котором интенсивность процессов примерно равна. К старости в обменных процессах начинает преобладать диссимиляция, что приводит к снижению биосинтеза многих важнейших для жизнедеятельности организма веществ: ферментов, структурных белков, легко доступных для использования источников энергии. Происходит снижение функциональных возможностей различных тканей, дистрофия мышц и снижение их силы; ухудшаются и качество нервной регуляции деятельности органов и систем организма.
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС! ЗАВТРА может быть ПОЗДНО! |
19.02.2013, 19:42 | #14 |
Senior Member
МегаБолтун
|
http://www.galactic.org.ua/Prostranstv/anoxin-5.htm
Петру Кузьмичу Анохину - выдающемуся ученому ХХ века посвящается Петр Кузьмич Анохин относится к удивительной плеяде русских ученых, которые, по меткому определению Г. Селье, являются "открывателями проблем". Всегда поражало выраженное стремление П.К. Анохина к новому. Он вскрывал новые тенденции в науке каким-то интуитивным чувством. П. К. Анохина отличала широта научных интересов. Он чувствовал себя уверенно в разных областях науки, в литературе и искусстве. Его по праву можно поставить в один ряд с выдающимися учеными-энциклопедистами.На основе творческого развития научных идей своих предшественников И. М. Сеченова, И. П. Павлова и А. А. Ухтомского П. К. Анохин сформулировал оригинальную теорию функциональных систем, которая, по существу, явилась основой новой интегративной физиологии и медицины. Необходимость интегративного подхода в физиологии только в последние годы начинает настоятельно осознаваться отечественными и зарубежными учеными. Последние 32-й и 33-й Международные конгрессы физиологических наук прошли под настойчивым призывом к ученым всего мира развивать интегративную физиологию, ставящей свойства целого организма в ряд первейших задач современного естествознания. К нашему удовлетворению, благодаря трудам П. К. Анохина, такая интегративная физиология создана в нашей стране. Необходимость интегративной физиологии диктуется современной жизнью. Человек, его здоровье и всемогущие таланты в настоящее время, когда технократический подход низвел человека до уровня придатка великолепных творений человеческого ума - современных технологий и машин, требуют особого внимания. Технократия, как известно, исходит из убеждения, что человек может все, если ему будет предоставлена современная техника. По образному выражению шведского ученого Л. Леви ситуация современного научно-технического прогресса противоестественна: при ней как бы "нога подбирается к туфле". Технократический подход к человеку - величайшее заблуждение. Физиологические механизмы человека уже сейчас не могут справляться с огромными падающими на него психоэмоциональными нагрузками современной производственной деятельности и условий жизни. При наличии огромного числа обратных связей от различных параметров деятельности машин практически отсутствует контроль за физиологическими функциями работающих на этих машинах людей. Ситуацию усугубляют социально-политические преобразования во многих странах мира, включая Россию, а также экологическое неблагополучие во многих районах земного шара. Все это неизбежно ведет к росту стрессорной напряженности современного человечества. Теория функциональных систем, предложенная П. К. Анохиным, позволила с новых позиций приступить к оценке физиологических функций человека в различных условиях его жизнедеятельности и объективно оценивать эффективность реабилитационных мероприятий. Функциональные системы, по П. К. Анохину, самоорганизующиеся и саморегулирующиеся динамические центрально-периферические организации, объединенные нервными и гуморальными регуляциями, все составные компоненты которых взаимосодействуют обеспечению различных полезных для самих функциональных систем и для организма в целом адаптивных результатов, удовлетворяющих его различные потребности. Оценка параметров достигнутых результатов в каждой функциональной системе постоянно осуществляется с помощью обратной афферентации. Адаптивные результаты, образующие различные функциональные системы, могут проявляться на молекулярном, клеточном, гомеостатическом, поведенческом, психическом уровнях и при объединении живых существ в популяции и сообщества. Отсюда понятно, что целостный организм на основе нервных, гуморальных и информационных механизмов объединяет множество слаженно взаимодействующих функциональных систем, часто принадлежащих к разным структурным образованиям и обеспечивающих своей содружественной деятельностью гомеостазис и адаптацию к окружающей среде. Начиная с ранних стадий эмбрионального развития, человеческий организм и его функции складываются на основе процессов адаптивной самоорганизации. Под влиянием генетической информации геном оплодотворенной яйцеклетки начинает экспрессировать биологически активные вещества, в частности информационные молекулы - олигопептиды и белки. Эти молекулы определяют рост и дифференцировку тканей, а также их объединение в специальные органы. Навстречу этим информационным молекулам в определенных тканях созревают специфические рецепторы. Под воздействием информационных молекул на соответствующие рецепторы складывается специфическая интеграция часто удаленных друг от друга органов и тканей, совокупная деятельность которых организует специальную функцию. Функция этих органов приводит к определенным приспособительным результатам, которые на основе обратных связей формируют специальные функциональные системы развивающегося организма, определяющие в первую очередь оптимальный уровень метаболических процессов его внутренней среды. К моменту рождения с опережением формируются специальные рецепторы внешней среды, направленные на восприятие различных параметров полезных приспособительных результатов, достигаемых новорожденными в процессах их активного взаимодействия с внешней средой и направленных, прежде всего, на удовлетворение их ведущих биологических потребностей. При взаимодействии факторов, удовлетворяющих исходные потребности новорожденных (т.е. при достижении полезных приспособительных результатов), складываются функциональные системы поведенческого уровня. При освоении языка у ребенка складываются функциональные системы психического уровня. Ведущая роль в адаптивной самоорганизации различных функций организма принадлежит его разнообразным жизненно важным и в первую очередь метаболическим потребностям. Именно потребности первично объединяют разнообразные молекулярные процессы и ткани в системные организации, обеспечивающие удовлетворение этих потребностей. В свою очередь, в процессе удовлетворения потребностей, т. е. при достижении адаптивных результатов, происходит своеобразная фиксация сложившейся под влиянием молекулярной потребности органной интеграции. Адаптивный результат на основе обратных афферентаций таким образом консолидирует организованные исходной доминирующей потребностью отдельные элементы в динамическую, саморегулирующуюся функциональную систему. Однако этим дело не ограничивается. После неоднократного, а иногда и однократного удовлетворения исходной потребности, т. е. достижения потребного результата, субъекты с помощью сформированной функциональной системы начинают активно предвидеть и оценивать свойства этого результата - формируется аппарат предвидения результата - акцептор результата действия. Как следствие этого деятельность любой функциональной системы приобретает свойство саморегуляции и направленность на достижение полезных для организма приспособительных результатов. Полезные приспособительные результаты выступают, таким образом, в роли системообразующих факторов. Последовательное и избирательное формирование функциональных систем в процессе онтогенетического развития составляет, по П. К. Анохину, процессы системогенеза. В результате эволюционных преобразований функциональные системы выступили в роли объективно существующих аппаратов самоорганизации приспособительных функций организма человека. Раскрытие закономерностей их организации и становления составили созданную П. К. Анохиным общую теорию функциональных систем. Органный и системный подход в медицине С давних пор организм человека традиционно рассматривается как совокупность различных органов, объединенных нервной и гуморальной регуляцией. В медицине исторически под влиянием естественных наук, а главное - анатомических исследований, несмотря на провозглашенный, начиная с основополагающих работ С. Г. Зыбелина, М. Я. Мудрова, Е.О. Мухина, И.М. Сеченова, И. П. Павлова и др., принцип целостности организма, сложилось органное мышление. Любой современный учебник по важнейшим фундаментальным дисциплинам, таким, например, как анатомия, физиология, гистология и др., строится по органному принципу. Этому следует органная патология - болезни сердца, легких, печени, желудочно-кишечного тракта, почек, мозга, и т. д. Врачи разделились по органным специальностям. Патогенез, диагностика и лечение непосредственно связываются с функцией конкретных органов, и профессиональный взгляд врача, как правило, в основном направлен в сторону больных органов. П. К. Анохин сформулировал новый подход к пониманию функций целого организма. Взамен классической физиологии органов, традиционно следующей анатомическим принципам, теория функциональных систем провозглашает системную организацию функций человека, начиная от молекулярного вплоть до социального уровня. Целый организм с этих позиций представляет слаженную интеграцию множества функциональных систем, одни из которых своей саморегуляторной деятельностью определяют устойчивость различных показателей внутренней среды - гомеостазис, другие - адаптацию живых организмов к среде обитания. Одни функциональные системы генетически детерминированы, другие складываются в индивидуальной жизни в процессе взаимодействия организма с разнообразными факторами внутренней и внешней среды, т. на основе обучения. Теория функциональных систем, однако, коренным образом отличается от системного подхода, предложенного Л. фон Берталанфи и его последователями. Как известно, в соответствии с общераспространенным системным подходом под системами понимается только "совокупность составляющих их элементов". В отличие от этого функциональные системы являются динамически функционирующими организациями, обеспечивающими своей саморегуляторной деятельностью полезные для организма приспособительные результаты. Общие свойства функциональных систем Ведущим свойством функциональной системы любого уровня организации является принцип саморегуляции. В соответствии с теорией функциональных систем отклонение того или иного результата деятельности функциональных систем от уровня, определяющего нормальную жизнедеятельность организма, само является причиной к мобилизации всех составляющих функциональные системы компонентов на возвращение измененного результата к уровню, определяющему оптимальное течение процессов жизнедеятельности. В саморегуляции проявляются торсионные свойства функциональных систем, идентичные процессам, происходящим на атомном уровне. Известно, что торсионный механизм обусловлен вращательными моментами спинов взаимодействующих атомных частиц. Рождаясь под влиянием информации, спин направлен в одну сторону и его крутящий момент имеет одно направление. В следующий момент спин под влиянием информации направлен в другую сторону и его крутящий момент имеет другое направление. В функциональных системах организма отклонение результата деятельности функциональной системы от уровня, определяющего нормальную жизнедеятельность, заставляет все элементы функциональной системы работать в сторону его возвращения к оптимальному уровню. При этом формируется субъективный информационный сигнал - отрицательная эмоция, позволяющая живым организмам оценивать возникшую потребность. При возвращении результата к оптимальному для жизнедеятельности уровню элементы функциональных систем работают в противоположном направлении. Достижение оптимального уровня результата в норме сопровождается информационной положительной эмоцией. Саморегуляторная деятельность функциональных систем определяется дискретными процессами системного квантования жизнедеятельности. Сменяющие друг друга циклы саморегуляции функциональных систем - от потребности к ее удовлетворению - составляют отдельные системокванты, которые выступают в роли исполнительных операторов функциональных систем. Дискретность системоквантов определяется их триггерными свойствами. Под влиянием потребности возбудимость составляющих "системокванты" элементов последовательно наращивается до критического уровня. По достижении критического уровня наблюдается наиболее интенсивная активность "системоквантов", которая снижается по мере удовлетворения исходной потребности. Таким образом, в зависимости от состояния регулируемого результата функциональные системы усиливают или, наоборот, снижают интенсивность своей саморегуляторной деятельности. Интенсивность процессов саморегуляции функциональных систем определяет ритмы временных изменений различных функций организма. Причем каждая функциональная система имеет свой индивидуальный специфический ритм деятельности, тесно увязанный с ритмами деятельности других взаимосвязанных с ней функциональных систем. В нормально функционирующем организме действует универсальное правило: общая сумма механизмов, возвращающих отклоненный от оптимального уровня результат, с избытком преобладает над отклоняющими механизмами. Для удержания полезного приспособительного результата на оптимальном уровне и его возвращения к этому уровню в случае отклонения каждая функциональная система избирательно объединяет различные органы и ткани, комбинации нервных элементов и гуморальных влияний, а также - при необходимости - специальные формы поведения. Примечательно, что в различные функциональные системы избирательно включаются одни и те же органы своими различными метаболическими степенями свободы. В результате одни и те же органы человека, включающиеся в деятельность различных функциональных систем, приобретают особые свойства. К примеру, почки своими различными степенями свободы, которые представлены в каждом случае специфическими физиологическими и биохимическими реакциями, могут включаться в функциональные системы поддержания оптимального уровня газов, кровяного и осмотического давления, температуры и др. Особенно разнообразны и специфичны постсинаптические процессы отдельных нейронов мозга, включенных в различные функциональные системы гомеостатического и поведенческого уровня. Объединяемые в функциональные системы элементы не просто взаимодействуют, а взаимосодействуют достижению системой ее полезного приспособительного результата. Их тесное взаимодействие проявляется прежде всего в корреляционных отношениях ритмов их деятельности.
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС! ЗАВТРА может быть ПОЗДНО! |
19.02.2013, 19:43 | #15 |
Senior Member
МегаБолтун
|
Торсионный механизм деятельности функциональных систем, будучи волновым процессом, определяет их голографические свойства. В каждой функциональной системе включенные в систему элементы в своей ритмической деятельности отражают ее торсионную деятельность и особенно состояние ее конечного результата (Б. В. Журавлев).
По аналогии с физической голографией сигнализацию о потребности можно рассматривать в качестве "опорной" волны, а сигнализацию о достигнутом результате - удовлетворении потребности - в качестве "предметной" волны. Интерференционное взаимодействие "опорной" и "предметных" волн осуществляется на структурной основе многочисленных информационных экранов организма. На уровне тканей это - опережающие молекулярные реакции мембран и ядерных образований клеток, позволяющие программировать и оценивать потребность и ее удовлетворение. В центральной нервной системе в процессе эволюции сформировались специальные информационные экраны. Голографическим информационным экраном мозга являются структуры, составляющие установленный П. К. Анохиным аппарат акцептора результата действия. Именно на нейронах акцептора результата действия осуществляется взаимодействие мотивационных и подкрепляющих возбуждений, формирующихся на основе сигнализаций о потребностях и их удовлетворении, а также программирование свойств потребных результатов. Как правило, древние лимбические структуры мозга определяют преимущественно эмоциональную оценку информации, в то время как программирование и оценка речевой и словесной информации у человека определяется преимущественно нейронами коры больших полушарий, особенно ее фронтальных отделов (П. Мак-Лейн). В построении информационных экранов организма можно предполагать участие полимерных жидких кристаллов соединительной ткани, клеточных мембран и молекул ДНК и РНК. Функциональным системам разного уровня организации присуще свойство изоморфизма. Все функциональные системы имеют принципиально одинаковую архитектонику, включающую на основе саморегуляторных взаимодействий результат, обратную афферентацию от результата, центр и исполнительные элементы. Центральная архитектоника функциональных систем включает стадии афферентного синтеза, принятия решения, акцептор результата действия, эфферентный синтез, действие и постоянную оценку достигнутых результатов с помощью обратной афферентации. В развитие общей теории функциональных систем мы предложили различать у человека несколько уровней организации функциональных систем: метаболический, гомеостатический, поведенческий, психический и социальный. На метаболическом уровне функциональные системы обуславливают достижение завершающих этапов химических реакций в тканях организма. При появлении определенных продуктов химические реакции по принципу саморегуляции прекращаются или, наоборот, активируются. Типичным примером функциональной системы метаболического уровня является процесс ретроингибирования. На гомеостатическом уровне многочисленные функциональные системы, объединяющие нервные и гуморальные механизмы, по принципу саморегуляции обеспечивают оптимальный уровень важнейших показателей внутренней среды организма, таких, как масса крови, кровяное давление, температура, рН, осмотическое давление, уровень газов, питательных веществ и т. д. На поведенческом биологическом уровне функциональные системы определяют достижение человеком биологически важных результатов - специальных факторов внешней среды, удовлетворяющих его ведущие метаболические потребности в воде, питательных веществах, защите от разнообразных повреждающих воздействий и в удалении из организма вредных продуктов жизнедеятельности, половую активность и т.д. Функциональные системы психической деятельности человека строятся на информационной основе идеального отражения человеком его различных эмоциональных состояний и свойств предметов окружающего мира с помощью языковых символов и процессов мышления. Результаты функциональных систем психической деятельности представлены отражением в сознании человека его субъективных переживаний, важнейших понятий, абстрактных представлений о внешних предметах и их отношений, инструкций, знаний и т.д. На социальном уровне многообразные функциональные системы определяют достижение отдельными людьми или их группами социально значимых результатов в учебной и производственной деятельности, в создании общественного продукта, в охране окружающей среды, в мероприятиях по защите отечества, в духовной деятельности, в общении с предметами культуры, искусства и т. д. Все функциональные системы в целом организме слаженно взаимодействуют, определяя в конечном счете нормальное течение метаболизма организма в целом. Устойчивость различных метаболических процессов в тканях и их слаженная приспособленность к различным поведенческим и психическим задачам в свою очередь определяют нормальное, здоровое состояние человека. Межсистемные отношения в организме Взаимодействие функциональных систем в организме осуществляется на основе принципов иерархического доминирования,мультипараметрического и последовательного взаимодействия, системогенеза и системного квантования процессов жизнедеятельности. Иерархическое доминирование функциональных систем. Как известно, принцип доминанты был открыт выдающимся отечественным физиологом А. А. Ухтомским. В каждый данный момент времени в организме человека совершается множество разнообразных метаболических реакций, составляющих в целом многопараметрическую общую потребность организма. Однако каждая специфическая функциональная система организма формируется только каким-либо одним параметром внутренней среды, составляющим только часть общей потребности организма. Всегда один из параметров общей потребности организма выступает в роли ведущего доминирующего, будучи наиболее значимым для выживания, продления рода или для адаптации человека во внешней и прежде всего социальной среде, формируя доминирующую функциональную систему. При этом все другие функциональные системы либо вытормаживаются, либо своей результативной деятельностью способствуют деятельности доминирующей функциональной системы. По отношению к каждой доминирующей функциональной системе субдоминирующие функциональные системы в соответствии с их биологической значимостью и значимостью для социальной деятельности человека, начиная от молекулярного вплоть до организменного и социально общественного уровня, выстраиваются в определенном иерархическом порядке. Иерархические взаимоотношения функциональных систем в организме строятся на основе результатов их деятельности. После удовлетворения доминирующей потребности деятельностью организма человека завладевает следующая ведущая по социальной и биологической значимости потребность. Теперь она организует доминирующую функциональную систему, по отношению к которой другие также выстраиваются в иерархическом порядке, и т. д. Практически вся жизнь человека складывается из постоянной смены доминирующих функциональных систем, отражая сущность непрерывно происходящего обмена веществ и постоянного приспособления человека к окружающей, особенно социальной среде. Иерархия функциональных систем в организме человека, упрощенно говоря, отражает их взаимодействие по вертикали. Другим принципом, отражающим взаимодействие мультипараметрическое их взаимодействие. Мультипараметрическое взаимодействие. Этот принцип отражает обобщенную деятельность различных функциональных систем в организме человека. Особенно отчетливо принцип мультипараметрического взаимодействия проявляется в деятельности функциональных систем гомеостатического уровня, в которых изменение одного показателя внутренней среды, представляющего результат деятельности какой-либо функциональной системы, немедленно сказывается на результатах деятельности других связанных с ним функциональных систем. Принцип мультипараметрического взаимодействия отчетливо выявляется, например, в деятельности функциональной системы, определяющей уровень газовых показателей в организме. В этой функциональной системе одновременно осуществляется взаимодействие нескольких взаимосвязанных дыхательных показателей - рН, РО2 и РСО2. Изменение одного из этих показателей приводит к перераспределению содержания других (Е. А. Юматов). На основе принципа мультипараметрического взаимодействия строится гомеостазисв целом как обобщенный результат взаимосвязанной деятельности различных функциональных систем, одни из которых обеспечивают достижение человеком поведенческих или социально значимых результатов, а другие - пригнанное взаимодействие с функциональными системами поведенческого уровня различных показателей гомеостазиса. В результате этих взаимодействий происходит оптимальное достижение поведенческих, так же как и социально значимых результатов. Нетрудно заметить, что для функциональных систем, объединенных принципом многосвязного взаимодействия, характерен качественно иной принцип саморегуляции: отклонение оптимального уровня того или иного параметра обобщенного результата выступает в качестве стимула к направленному перераспределению в определенных соотношениях значений всех других параметров результатов других системных организаций, связанных с данной функциональной системой. Последовательное взаимодействие функциональных систем. В целом организме человека деятельность различных функциональных систем последовательно связана друг с другом во времени, когда результат деятельности одной функциональной системы последовательно формирует другую потребность и соответствующую функциональную систему. Принцип последовательного взаимодействия различных функциональных систем в организме человека отчетливо проявляется в континууме процессов кровообращения, пищеварения, дыхания, выделения и т. д. Типичным примером последовательного взаимодействия функциональных систем является процесс питания. В этом процессе функциональная система, определяющая поиск и потребление пищи, сменяется функциональной системой, результатом деятельности которой является обработка принятой пищи в ротовой полости. Эта функциональная система, в свою очередь, последовательно завершается актом глотания. Процессы механической и химической обработки пищи в желудке последовательно завершаются конечным результатом - поступлением пищи в двенадцатиперстную кишку. Обработка пищи в двенадцатиперстной кишке и тонком кишечнике завершается всасыванием принятых питательных веществ. После этого происходит смена пищеварительных функциональных систем на функциональную систему формирования и выведения из организма каловых масс, завершающим результатом деятельности которой является акт дефекации. Особую разновидность последовательного взаимодействия функциональных систем во времени представляют процессы системогенеза. П. К. Анохин определил системогенез как избирательное созревание функциональных систем и их отдельных частей в процессах пре- и постнатального онтогенеза. В последние годы мы расширили понятие "системогенез" применительно к динамике становления функциональных систем в процессе индивидуального обучения человека, автоматизации и утрате его разнообразных навыков. Этот раздел теории функциональных систем мы обозначили как "системогенез системогенеза" оказалось возможным распространить практически на весь период индивидуальной жизни человека - от рождения до старческого возраста. Закономерности формирования системных отношений в человеческих популяциях рассматриваются как "популяционный системогенез".
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС! ЗАВТРА может быть ПОЗДНО! |