Arhum.ru - Forums
Тесты IQ, узнай свой уровень IQ прямо сейчас, РОО САЛЮС
руна Гебо
от я к Я через Мы
карманный справочник мессии
Танец на Грани
Встречаясь и Сливаясь с Тенью
на Пути к Себе
О-Со-Знанность через Гармонию Целостно-Непрерывного Движения,
ОбъЕдиняющего конфликтогенные противоположности в Себе=Мы
Технологии Системы Феникс
· Новости · Группа · Фото & Видео · Семинары · Полезное · Система · Контакты ·

подробнее...

Полезные ссылки:
0.Ориентация по Форуму
1.Лунные дни
2.ХарДня
3.АстроСправочник
4.Гороскоп
5.Ветер и погода
6.Горы(Веб)
7.Китайские расчёты
8.Нумерология
9.Таро
10.Cовместимость
11.Дизайн Человека
12.ПсихоТип
13.Биоритмы
14.Время
15.Библиотека


Вернуться   Arhum.ru - Forums > Мир со ВСЕХ сторон, изнутри и снаружи. > 1 С любознательностью к миру. Общаемся. > 3 Любознательно-Познавательное > 3.3 мир природы > 2 космос

Важная информация

Ответ
 
Опции темы Поиск в этой теме Опции просмотра
Старый 16.01.2025, 20:08   #271
Феникс Джонатанович ДонХуанЦзы
Senior Member
МегаБолтун
 
Аватар для Феникс Джонатанович ДонХуанЦзы
 
Регистрация: 02.06.2006
Адрес: Москва
Сообщений: 72,829
Записей в дневнике: 4
Вес репутации: 10
Феникс Джонатанович ДонХуанЦзы отключил(а) отображение уровня репутации
По умолчанию

Космологические парадоксы. Что происходит со Вселенной?


6 минут
5724 прочтения
8 августа 2022






Эволюция науки о Вселенной с самого рождения и по настоящее время сопровождалась чередой различных парадоксов. Так, одним из первых был так называемый фотометрический парадокс, возникающий в модели её бесконечности и вечного существования. Он заключался в следующем: если Вселенная бесконечна и существует вечно, то в ней находится бесконечное количество звёзд и за бесконечное время свет от них дошёл бы до нашей планеты. В этом случае небо всегда бы сияло, и такого явления, как ночь попросту бы не существовало. Тоже касается и гравитационного парадокса, возникающего из-за того, что бесконечное количество звёзд, обусловило бы бесконечную массу, что привело бы коллапсу Вселенной.
Решение данных противоречий было в своё время предложено Эйнштейном. В его модели стационарной, но замкнутой Вселенной, находилось определённое количество звёзд. Тем не менее гравитационный парадокс всё же оставался, и, согласно ему, силы гравитации должны были сжать всё вещество во Вселенной. Чтобы избежать этого, Эйнштейн для уравновешивания гравитации ввёл в теорию космологическую постоянную, а также считал, что без космологической постоянной общая теория относительности не могла объяснить однородность и изотропность Вселенной, которая выглядит одинаково из любой точки.
Однако Эйнштейн ошибался. В 1922 году А.А. Фридман доказал, что это возможно только при условии нестатичности Вселенной, т.е. она должна либо расширяться, либо сжиматься. Последующие астрономические наблюдения, основанные на работе А.А. Фридмана, показали правильность описания крупномасштабной структуры Вселенной. Впоследствии Эйнштейн считал, что введение космологической постоянной было грубой ошибкой в его жизни, но между тем эта идея прижилась, и, как отмечал Г. Гамов: «космологическая постоянная … снова и снова поднимала свою безобразную голову».
В 1927 году бельгийский физик и священник (!) Жорж Леметр заметил закономерность: чем отдалённее галактика, тем больше её красное смещение, и чем дальше она была, тем быстрее удалялась.
В 1929 году Хаббл сделал вывод – Вселенная расширяется. Почти в тоже время несколько теоретиков пришли к пониманию, что произошёл своего рода взрыв пространства и времени, впоследствии получивший название «Большой взрыв». Это была фантастическая идея, которая в течение долго времени не находила эмпирических подтверждений и игнорировалась астрономами. Только в 1965 году ситуация кардинально изменилась. Две статьи, одновременно опубликованные в Astrophysical Journal навсегда изменили космологические воззрения учёных. Первая, выполненная четырьмя физиками из Принстонского университета, предсказала текущую температуру Вселенной, возникшей из изначального огненного шара. В другой, два астронома из Bell Labs сообщили о температуре излучения, зафиксированного радиоантенной, известного сегодня как космический микроволновой фон. С этого времени идея взрывного начала происхождения Вселенной неизменно брала верх над альтернативными космологическими моделями. В 1970 году Аллан Р. Сэндидж предложил два числа, характеризующие процесс расширения. Первое, это текущая скорость расширения Вселенной – постоянная Хаббла. Второе число представляло собой скорость, с которой это расширение замедлялось – параметр замедления.
В 1980-х годах обнаружилась парадоксальность теории Большого взрыва, постулирующая начальные условия взрывного процесса. Согласно этим представлениям, температура должна была быть бесконечной, также, как и плотность вещества, кроме того, вводилось нулевое время, но данные показатели не имели физического смысла. Также эта теория не могла объяснить трёхмерность нашего пространства, как и ряд других параметров. Чтобы исправить эти парадоксальные недостатки А. Гут предложил модификацию данной теории, введя конкретные физические значения температуры, давления и ряд других, предположив, что в самом начале своего рождения из квантового вакуума Вселенная прошла фазу быстрого и интенсивного расширения (инфляцию), после чего темп расширения должен оставаться постоянным. Из теории инфляции следует, что в разное время скорость расширения не была одинакова. Между тем космологи пребывали в уверенности, что после инфляционной фазы через какой-то промежуток времени должно было начаться замедление этого процесса, поскольку силы гравитации обязаны тормозить расширение.
В конце 1980-х годов начались исследования процесса замедления расширения. В качестве объектов были выбраны сверхновые типа Ia, яркость которых является у всех одинаковой и может зависеть только от расстояния до них. Если расширение замедляется на большом расстоянии, то сверхновая будет ближе и, следовательно, ярче, чем если бы Вселенная расширялась с постоянной скоростью. Между тем самые отдалённые сверхновые оказались тусклее, чем ожидалось. В 1998 году учёные пришли к выводу, что расширение не замедляется, а наоборот ускоряется. Причиной этого ускорения была названа «тёмная энергия», которая составляет более двух третей от всей массы нашей Вселенной.
Ещё более парадоксальные результаты наблюдений свидетельствовали о том, что до семи – восьми миллиардов лет после Большого взрыва, и фазы инфляции, и темп расширения действительно замедлялись. Вместе с тем впоследствии под действием неизвестных причин «антигравитационные силы» стали преобладающими, и замедление сменилось ускоренным расширением, продолжающимся и в настоящее время. Свойства «тёмной энергии», ответственной за ускоренное расширение, в чём-то соответствуют космологической постоянной Эйнштейна, и её антигравитационная сила, природа и происхождение остаются неизвестными.
Возможно, рассмотрение космологической постоянной с точки зрения стандартной модели физики элементарных частиц позволит определить подходы к её исследованию. Если расширение пространства будет осуществляться со всё бо́льшим ускорением, то это приведёт к уничтожению всей материи, и Вселенной уготована неожиданная судьба, называемая «Большой разрыв».
Особая дискуссия развернулась по поводу астрономических наблюдений, касающихся постоянной Хаббла (H0), текущей скорости расширения. Первоначально сам Сэндидж считал, что H0 составляет около 50 (скорость расширения, выраженная в километрах в секунду на 3,26 миллиона световых лет). Отсюда вытекало, что возраст Вселенной составляет 20 млрд лет. Другие придерживались значения H0 близкой к 100, и это соответствовало возрасту в 10 млрд лет. Более точные наблюдения с использованием телескопа Хаббла и других инструментов привели к результатам с меньшим разбросом значений, лежащих в интервале от 72 до 73. При этом в качестве объектов наблюдения использовались не только сверхновые, но и цефеиды, а также красные сверхгиганты. В результате были получены значения 67,4. с небольшими расхождениями.
Различные методы и объекты наблюдений дали разное значение постоянной Хаббла, что вызвало кризисную ситуацию. Исследователи рассматривают несколько возможностей для разрешения ситуации. Так, согласно одной из них, лестница расстояний зависит от прочности её ступеней – стандартных свечей. В любом научном наблюдении, конечно, возможны систематические ошибки. Тем не менее независимые наблюдения за космическим микроволновым фоном на Южном полюсе, включающие телескоп и миллиметровую матрицу Атакамы показывают, что ошибок нет.
Если источник разногласий по поводу постоянной Хаббла не в наблюдениях ранней и поздней Вселенной, то тогда у космологов остаётся вариант связанный с «новой физикой». Новая физика должна включать в себя процессы и явления, которые выходят за рамки наших сегодняшних знаний о Вселенной. По-видимому, она должна объяснить разные темпы расширения в различные периоды развития Вселенной и построить модель её будущего существования.
Платформа Дзен по определённым причинам меняет алгоритмы показов, и теперь статьи канала Intellectus увидят только его подпиcчики. Если вы уверены, что подписаны на канал рекомендуется проверить это в связи с возможной автоматической отпиской.
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС!
ЗАВТРА может быть ПОЗДНО!
Феникс Джонатанович ДонХуанЦзы вне форума   Ответить с цитированием
Старый 21.01.2025, 10:03   #272
Феникс Джонатанович ДонХуанЦзы
Senior Member
МегаБолтун
 
Аватар для Феникс Джонатанович ДонХуанЦзы
 
Регистрация: 02.06.2006
Адрес: Москва
Сообщений: 72,829
Записей в дневнике: 4
Вес репутации: 10
Феникс Джонатанович ДонХуанЦзы отключил(а) отображение уровня репутации
По умолчанию

https://dzen.ru/a/ZLJGofSNHwjLTbhV?from_site=mail
Чем космос отличается от Вселенной: спорим, вы не знали


6 минут
3308 прочтений
15 июля 2023



Оглавление















Ключевое различие — космос против Вселенной

Космос или космическое пространство — это пустота, которая существует между небесными телами, включая Землю. Это вакуум, состоящий из частиц с низкой плотностью, в основном из плазмы водорода и гелия. Сюда же входят магнитные поля, электромагнитное излучение, нейтрино, пыль и космические лучи.
Вселенную можно определить как все, что существует. Она состоит из всех видов физической материи и энергии, солнечных систем, планет, галактик и всего содержимого космоса. Это более широкое понятие, охватывающее все, что находится в пространстве и времени, включая сам космос, а также все физические законы и процессы.
Что такое космос?

Космическое пространство существует за пределами Земли и ее атмосферы, а также между небесными телами. Это частичный вакуум: его области определяются различными магнитными полями и «ветрами», которые преобладают внутри них и простираются до точки, в которой эти поля уступают место тем, что находятся за их пределами. Рассмотрим каждую из этих космических областей.
Околоземное пространство

Область космического пространства вблизи Земли называется околоземным пространством или околоземной орбитой. Околоземное пространство охватывает различные орбиты, на которых находятся искусственные спутники, космические станции и другие космические аппараты.



Околоземное пространство делится на несколько типов орбит: низкую околоземную орбиту (от 160 до 2 000 км), среднюю околоземную орбиту (от 2 000 до 35 786 км) и геостационарную орбиту (35 786 км). На высоте 100 км находится линия Кармана — международная граница между атмосферой и космосом.
Межпланетное пространство

Эта среда состоит из массы и энергии, которая заполняет Солнечную систему и через которую движутся все крупные тела: планеты, карликовые планеты, астероиды и кометы. До 1950 года межпланетное пространство считалось либо пустым вакуумом, либо состоящим из «эфира» — гипотетической всепроникающей среды, колебания которой проявляют себя как электромагнитные волны.
На самом деле в межпланетном пространстве есть межпланетная пыль, космические лучи и горячая плазма солнечного ветра. Температура межпланетной среды изменчива. Для частиц пыли в поясе астероидов температуры колеблются от −73 °C до −108 °C.


То, как межпланетная среда взаимодействует с небесными телами, зависит от того, есть ли у них магнитные поля или нет. Например, у Луны нет магнитного поля, и солнечный ветер воздействует прямо на ее поверхность. Планеты с собственным магнитным полем, такие, как Земля и Юпитер, окружены магнитосферой — их магнитное поле доминирует над солнечным. Магнитосфера защищает планету от потоков заряженных частиц солнечного ветра.
Межзвездное пространство

Ученые определяют начало межзвездного пространства как место, где постоянный поток вещества и магнитное поле Солнца перестают воздействовать на его окрестности. Эта граница называется гелиопаузой. Область космического пространства, заполняемая плазмой, которая исходит от Солнца и окружает всю Солнечную систему, — это гелиосфера. На границе между гелиосферой и межзвездным пространством солнечный ветер замедляется и вступает в контакт с плазмой, поступающей из межзвездного пространства.
Это область между звездами содержит разные формы материи: нейтрино, заряженные частицы, атомы, молекулы, темную материю и фотоны. Среднее расстояние между звездами в галактике Млечный Путь — около пяти световых лет, хотя они более сгруппированы вблизи центра галактики, а не на окраинах, где расположены Солнце и Земля.
Межзвездная среда включает газ в ионной, атомарной и молекулярной форме, а также пыль и космические лучи. Она заполняет межзвездное пространство и плавно переходит в окружающее межгалактическое пространство.
Межгалактическое пространство

Это огромные пустые области, которые расположены между галактиками. Например, между Млечным Путем и Андромедой около 2,5 миллиона световых лет межгалактического пространства.
Межгалактическое пространство максимально приближено к абсолютному вакууму. Ученые подсчитали, что на кубический метр приходится только один атом водорода. Плотность материала выше вблизи галактик и ниже в средней точке между галактиками.



Галактики связаны разреженной плазмой, которая образует космические нитевые структуры. Плазма, составляющая межгалактическую среду, в основном состоит из ионизированного водорода.
Межгалактическую среду можно увидеть в телескопы на Земле, потому что она нагрета до десятков тысяч и даже миллионов градусов. Этого достаточно, чтобы электроны могли покинуть ядра водорода во время столкновений. Ученые могут обнаружить энергию, выделившуюся в результате этих столкновений, в рентгеновском спектре. Рентгеновская обсерватория NASA «Чандра» — космический телескоп, предназначенный для поиска рентгеновских лучей, — обнаружила обширные облака горячей межгалактической среды в регионах, где галактики сталкиваются друг с другом в виде скоплений.
Астрономы также находят в межгалактическом пространстве звезды. Их называют межгалактическими или звездами-изгоями. Считается, что эти звезды были выброшены из своих родных галактик черными дырами или после столкновения с другими галактиками. В исследовании 2012 года сообщалось о более чем 650 таких звезд на краю Млечного Пути, но, по некоторым оценкам, их там могут быть триллионы.
Что такое Вселенная?

Проще говоря, это все. Она включает в себя всю материю, энергию, планеты, звезды, галактики и другие космические объекты. Это и физическое пространство, и время, и, в конце концов, человечество. Хотя размер всей Вселенной неизвестен, можно измерить размер наблюдаемой ее части — примерно 93 миллиарда световых лет в диаметре.
Вселенная возникла около 13,8 миллиарда лет назад в результате Большого взрыва и с тех пор продолжает расширяться. Она состоит из множества галактик, которые объединены гравитационными взаимодействиями. Галактики в свою очередь состоят из звезд, планет, астероидов, комет и других космических объектов. Существуют также области, заполненные межгалактическим газом и пылью.
При изучении движения галактик стало ясно, что в пространстве содержится гораздо больше материи, чем приходится на долю видимых объектов — звезд, галактик, туманностей и межзвездного газа. Эта невидимая материя известна как темная материя. Ученым еще предстоит постичь ее природу.


В самом большом масштабе галактики распределены равномерно и одинаково во всех направлениях, а это означает, что у Вселенной нет ни края, ни центра. В меньших масштабах галактики распределены в скопления и сверхскопления, которые образуют огромные нити и пустоты в пространстве.
В чем разница между Космосом и Вселенной?

Эти термины часто используются как синонимы, но у них есть отличия. Под Вселенной понимается все, что существует, включая время и пространство, материю и законы, которые ими управляют. Понятие Космоса обычно относится к пустоте или пространству между космическими объектами. В этом контексте он рассматривается как вакуум, заполненный лишь разреженной газообразной средой и другими формами энергии. Вселенную принято ассоциировать с хаосом, а космическое пространство — с порядком.
Космос против Вселенной

Космическое пространство относится к пустоте, которая существует между небесными объектами. Вселенная относится ко всей физической материи и энергии, системам, планетам, галактикам. Она включает в себя не только области между небесными объектами, но и другие аспекты реальности, такие как время, пространство и возможные физические законы.



Космическая среда не включает небесные объекты, только пустоту между ними. Тем не менее в ней есть, хотя и с очень низкой плотностью, ионы и атомы водорода, космические лучи и электромагнитное излучение, а также гипотетическая темная материя. Вселенная включает в себя все небесные объекты.
Состав космоса — магнитные поля, электромагнитное излучение, нейтрино, пыль и космические лучи. Вселенная состоит из планет, звезд, галактик, а также самого космического пространства.
Основное различие понятий заключается в том, что первое относится к пустоте между небесными объектами, тогда как второе обозначает всю совокупность физической материи и энергии, звездных систем, планет, галактик и все содержимое космического пространства. Таким образом, космос — это часть Вселенной.
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС!
ЗАВТРА может быть ПОЗДНО!
Феникс Джонатанович ДонХуанЦзы вне форума   Ответить с цитированием
Старый 23.01.2025, 08:30   #273
Феникс Джонатанович ДонХуанЦзы
Senior Member
МегаБолтун
 
Аватар для Феникс Джонатанович ДонХуанЦзы
 
Регистрация: 02.06.2006
Адрес: Москва
Сообщений: 72,829
Записей в дневнике: 4
Вес репутации: 10
Феникс Джонатанович ДонХуанЦзы отключил(а) отображение уровня репутации
По умолчанию

Астрофизик пересчитал возраст Вселенной: результат удивил


2 минуты
15,5 тыс прочтений
13 июля 2023



Оглавление












Наша Вселенная может быть вдвое старше текущих оценок. К такому выводу пришел Раджендра Гупта, профессор из Оттавского университета в Канаде. Свою гипотезу он объяснил с помощью теории усталого света Цвикки и эволюционирующих «констант связи», пишет ScienceDaily.
Что говорит ученый

«Наша недавно разработанная модель растягивает время формирования галактики на несколько миллиардов лет, делая возраст Вселенной 26,7 миллиарда лет, а не 13,7, как предполагалось ранее», — уточняет эксперт.
В течение многих лет астрономы и физики рассчитывали возраст Вселенной, измеряя время, прошедшее с момента Большого взрыва, и изучая самые старые звезды на основе красного смещения света, исходящего от далеких галактик. Таким образом, в 2021 году, благодаря новым методам и достижениям в области технологий, возраст нашей Вселенной был оценен в 13,797 миллиарда лет с использованием модели соответствия Lambda-CDM.
Тем не менее многие ученые были озадачены существованием таких звезд, как Мафусаил, которые кажутся старше предполагаемого возраста нашей Вселенной. Их также смущает открытие ранних галактик на продвинутом этапе эволюции, которое стало возможным благодаря космическому телескопу «Джеймс Уэбб». Эти галактики, существующие всего через примерно 300 миллионов лет после Большого Взрыва, по-видимому, имеют уровень зрелости и массы, обычно ассоциируемый с миллиардами лет космической эволюции. Кроме того, они удивительно малы по размеру — это еще один «слой тайны» в уравнении.


Новый взгляд на теорию усталого света

Теория усталого света Цвикки предполагает, что красное смещение света от далеких галактик связано с постепенной потерей энергии фотонами на огромных космических расстояниях. Однако было замечено, что это противоречит наблюдениям. Тем не менее Гупта обнаружил, что, «позволив этой теории сосуществовать с расширяющейся Вселенной, становится возможным переосмыслить красное смещение как гибридное явление, а не просто как следствие расширения».
В дополнение к теорию усталого света Цвикки, Гупта вводит идею эволюционирующих «констант связи», как предположил Поль Дирак. Константы связи — это фундаментальные физические константы, управляющие взаимодействием между частицами. Согласно Дираку, эти константы могли меняться со временем. Если позволить им развиваться, то временные рамки формирования ранних галактик, наблюдаемых телескопом «Джеймс Уэбб» на больших красных смещениях, могут быть увеличены с нескольких сотен миллионов лет до нескольких миллиардов лет. Это обеспечивает более вероятное объяснение продвинутого уровня развития и массы, наблюдаемых в этих древних галактиках.
Более того, Гупта предполагает, что традиционная интерпретация «космологической постоянной», представляющей темную энергию, ответственную за ускоряющееся расширение Вселенной, нуждается в пересмотре. Вместо этого он предлагает константу, которая объясняет эволюцию констант связи. Эта модификация космологической модели помогает решить загадку небольших размеров галактик, наблюдаемых в ранней Вселенной, и позволяет проводить более точные наблюдения.
Космос полон тайн и загадок. Посмотрите на них в нашей галерее:









Не пропустите новые публикации
__________________
Твори Любовь ЗДЕСЬ и СЕЙЧАС!
ЗАВТРА может быть ПОЗДНО!
Феникс Джонатанович ДонХуанЦзы вне форума   Ответить с цитированием
Ответ

Закладки


Ваши права в разделе
Вы не можете создавать новые темы
Вы не можете отвечать в темах
Вы не можете прикреплять вложения
Вы не можете редактировать свои сообщения

BB коды Вкл.
Смайлы Вкл.
[IMG] код Вкл.
HTML код Выкл.
Быстрый переход


Часовой пояс GMT +4, время: 08:45.


╨хщЄшэу@Mail.ru Rambler's Top100


Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd. Перевод: zCarot